Int J Sports Med 2007; 28(8): 650-654
DOI: 10.1055/s-2007-964855
Physiology & Biochemistry

© Georg Thieme Verlag KG Stuttgart · New York

The Effect of Basketball Training on the Players' Erythrocyte Membrane Acetylcholinesterase, (Na+,K+)-ATPase and Mg2+-ATPase Activities

T. Parthimos1 , C. Tsopanakis1 , P. Angelogianni1 , K. H. Schulpis2 , N. Parthimos1 , S. Tsakiris1
  • 1Department of Experimental Physiology, Medical School, University of Athens, Athens, Greece
  • 2Department of Metabolic Disorders, Institute of Child Health, “Aghia Sophia” Children's Hospital, Athens, Greece
Further Information

Publication History

accepted after revision July 6, 2006

Publication Date:
13 April 2007 (online)

Abstract

The aim of this study was to investigate whether the activities of erythrocyte membrane acetylcholinesterase (AChE), (Na+,K+)-ATPase and Mg2+-ATPase are modulated by a basketball training. Blood was obtained from 10 basketball players pre- and postexercise. Total antioxidant status (TAS), lactate and pyruvate concentrations were determined with kits, while the enzyme activities were determined spectrophotometrically. Post-training blood lactate and pyruvate concentrations as well as AChE (2.90 ± 0.05 vs. 3.98 ± 0.09 ΔOD/min · mg protein, p < 0.01) and Na+,K+-ATPase (0.58 ± 0.04 vs. 1.27 ± 0.12 µmol Pi/h · mg protein, p < 0.001) activities were remarkably increased, whereas TAS was significantly decreased. Mg2+-ATPase activity remained unaltered at the end of the training. In conclusion, the stimulation of AChE and Na+,K+-ATPase by the training may be due to the rise of blood catecholamine oxidation contributing to TAS decrease and/or the increase of serotonin levels. This stress condition may modulate cholinergic and catecholaminergic/serotoninergic functions in players.

References

  • 1 Alderton W K, Cooper C E, Knowles R G. Nitric oxide synthases: structure, function and inhibition.  Biochem J. 2001;  357 593-615
  • 2 Alessio H M, Hagerman A E, Fulkerson B K, Ambrose J, Rice R E, Wiley R L. Generation of reactive oxygen species after exhaustive aerobic and isometric exercise.  Med Sci Sports Exerc. 2000;  32 1576-1581
  • 3 Apostolidis N, Nassis G P, Bolatoglou T, Geladas N D. Physiological and technical characteristics of elite young basketball players.  J Sports Med Phys Fitness. 2004;  44 157-163
  • 4 Ashton T, Young I S, Peters J R, Jones E, Jackson S K, Davies B, Rowlands C C. Electron spin resonance spectroscopy, exercise, and oxidative stress: an ascorbic acid intervention study.  J Appl Physiol. 1999;  87 2032-2036
  • 5 Bogdanski D F, Tissari A, Brodie B B. Role of sodium, potassium, ouabain and reserpine in uptake, storage and metabolism of biogenic amines in synaptosomes.  Life Sci. 1968;  7 419-428
  • 6 Carageorgiou H, Tzotzes V, Pantos C, Mourouzis C, Zarros A, Tsakiris S. In vivo and in vitro effects of cadmium on adult rat brain total antioxidant status, acetylcholinesterase, (Na+,K+)-ATPase and Mg2+-ATPase activities: protection by L-cysteine.  Basic Clinic Pharmacol Toxicol. 2004;  94 112-118
  • 7 Cooper C E, Vollaard N B, Choueiri T, Wilson M T. Exercise, free radicals and oxidative stress.  Biochem Soc Trans. 2002;  30 280-285
  • 8 Cunningham H B, Yazaki P J, Domingo R C, Oades K V, Bohlen H, Sabbadini R A, Dahms A S. The skeletal muscle transverse tubular Mg-ATPase identity with Mg-ATPases of smooth muscle and brain.  Arch Biochem Biophys. 1993;  303 32-43
  • 9 Deliconstantinos G. Cortisol effect of (Na+ + K+)-stimulated ATPase activity and on bilayer fluidity of dog brain synaptosomal plasma membranes.  Neurochem Res. 1985;  10 1605-1613
  • 10 Dillard C J, Litov R E, Savin W M, Dumelin E E, Tappel A L. Effects of exercise, vitamin E and ozone on pulmonary function and lipid peroxidation.  J Appl Physiol. 1978;  45 927-932
  • 11 Ellman G L, Courtney K D, Andres Jr V, Feather-Stone R M. A new and rapid colorimetric determination of acetylcholinesterase activity.  Biochem Pharmacol. 1961;  7 88-95
  • 12 Fatranska M, Budai D, Oprsalova Z, Kvetnansky R. Acetylcholine and its enzymes in some brain areas of the rat under stress.  Brain Res. 1987;  424 109-114
  • 13 Fujino K, Yoshitake T, Inoue O, Ibii N, Kehr J, Ishida J, Nohta H, Yamaguchi M. Increased serotonin release in mice frontal cortex and hippocampus induced by acute physiological stressors.  Neurosci Lett. 2002;  320 91-95
  • 14 Galbraith D A, Watts D C. Changes in some cytoplasmatic enzymes from red cells fractionated into age groups by centrifugation in Ficoll/Triosil gradients. Comparison of normal humans and patients with Duchenne muscular dystrophy.  Biochem J. 1980;  191 63-70
  • 15 Halliwell B. Free radicals, proteins and DNA: oxidative damage versus redox regulation.  Biochem Soc Trans. 1996;  24 1023-1027
  • 16 Hartmann A, Pfuhler S, Dennog C, Germadnik D, Pilger A, Speit G. Exercise-induced DNA effects in human leukocytes are not accompanied by increased formation of 8-hydroxy-2′-deoxyguanosine or induction of micronuclei.  Free Rad Biol Med. 1998;  24 245-251
  • 17 Hernandez J. Brain Na+,K+-ATPase activity possible regulated by a specific serotonin receptor.  Brain Res. 1987;  408 399-402
  • 18 Kamber E, Poyiagi A, Delicostantinos G. Modifications in the activities of the membrane-bound enzymes during in vivo ageing of human and rabbit erythrocytes.  Comp Biochem Physiol B. 1984;  77 95-99
  • 19 Lindinger M I, Heigenhauser G I. The role of ion fluxes in skeletal muscle fatigue.  Can J Physiol Pharmacol. 1991;  69 246-253
  • 20 Lotti M. Cholinesterase inhibition: complexicities in interpretation.  Clin Chem. 1995;  41 1814-1818
  • 21 Lowry O H, Rosebrough N J, Farr A L, Randall R J. Protein measurement with the Folin phenol reagent.  J Biol Chem. 1951;  193 265-275
  • 22 Mata M, Fink D J, Gainer H, Smith C B, Davidsen L, Savaki H, Schwartz W J, Sokoloff L. Activity-dependent energy metabolism in rat posterior pituitary primarily reflects sodium pump activity.  J Neurochem. 1980;  34 213-215
  • 23 Meyer E M, Cooper J R. Correlations between Na+,K+-ATPase activity and acetylcholine release in rat cortical synaptosomes.  J Neurochem. 1981;  36 467-475
  • 24 Miller N J, Rice-Evans C, Davies M J, Copinathan V, Milner A. A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates.  Clin Sci (Lond). 1993;  84 407-412
  • 25 Molteni R, Fumagalli F, Magnaghi V, Roceri M, Gennarelli M, Racagni G, Melcangi R C, Riva M A. Modulation of friboblast growth factor-2 by stress and corticosteroids: from developmental events to adult brain plasticity.  Brain Res Brain Res Rev. 2001;  37 249-258
  • 26 Packer L. Oxidants, antioxidant nutrients and the athlete.  J Sport Sci. 1997;  15 353-363
  • 27 Robergs R A, Chiasvand F, Parker D. Biochemistry of exercise-induced metabolic acidosis.  Am J Physiol. 2004;  287 R502-R516
  • 28 Sahlin K, Edstrom L, Sjoholm H ., Hultman E. Effect of lactic acid accumulation and ATP decrease on muscle tension and relaxation.  Am J Physiol. 1981;  240 C121-C126
  • 29 Sanui H, Rubin H. The role of magnesium in cell proliferation and transformation. Boynton AL, McKeehan WL, Whitfield JF Ions, Cell Proliferation, and Cancer. New York; Academic Press 1982: 517-537
  • 30 Sastry B S, Phillis J W. Antagonism of biogenic amine-induced depression of cerebral cortical neurones by Na+,K+-ATPase in inhibitors.  Can J Physiol Pharmacol. 1977;  55 170-179
  • 31 Schroder H, Navarro E, Mora J, Galiano D, Tramullas A. Effects of alpha-tocopherol, beta-carotene and ascorbic acid on oxidative, hormonal and enzymatic exercise stress markers in habitual training activity of professional basketball players.  Eur J Nutr. 2001;  40 178-184
  • 32 Schulpis K H, Michelakakis H, Tsakiris T, Tsakiris S. The effect of diet on total antioxidant status, erythrocyte membrane Na+,K+-ATPase and Mg2+-ATPase activities in patients with classical galactosaemia.  Clin Nutr. 2005;  24 151-157
  • 33 Schulpis K H, Karikas G A, Tjamouranis J, Michelakakis H, Tsakiris S. Acetylcholinesterase activity and biogenic amines in phenylketonuria.  Clin Chem. 2002;  48 1794-1796
  • 34 Schulpis K H, Tjamouranis J, Karikas G A, Michelakakis H, Tsakiris S. In vivo effect of high phenylalanine blood levels on Na+,K+-ATPase and Mg2+-ATPase activities and biogenic amine concentrations in phenylketonuria.  Clin Biochem. 2002;  35 281-285
  • 35 Schulpis K H, Tsakiris S, Karikas G A, Moukas M, Behrakis P. Effect of diet on plasma total antioxidant status in phenylketonuric patients.  Eur J Clin Nutr. 2003;  57 383-387
  • 36 Sussman J L, Harel M, Frolow F, Oefner C, Goldman A, Toker L, Silman I. Atomic structure of acetylcholinesterase from Torpedo californica: a phototypic, acetylcholine-binding protein.  Science. 1991;  253 872-879
  • 37 Sweadner K J, Goldin S M. Active transport of sodium and potassium ions: mechanism, function and regulation.  N Engl J Med. 1980;  302 777-783
  • 38 Tanaka M, Kohno Y, Nakagawa R, Ida Y, Takeda S, Nagasaki N. Time-related differences in noradrenaline turnover in rat brain regions by stress.  Pharmacol Biochem Behav. 1982;  16 315-319
  • 39 Tanaka M, Kohno Y, Nakagawa R, Ida Y, Takeda S, Nagasaki N, Noda Y. Regional characteristics of stress-induced increases in brain noradrenaline release in rats.  Pharmacol Biochem Behav. 1983;  19 543-547
  • 40 Tsakiris S. Effects of L-phenylalanine on acetylcholinesterase and Na(+), K(+)-ATPase activities in adult and aged rat brain.  Mech Ageing Dev. 2001;  122 491-501
  • 41 Tsakiris S, Angelogianni P, Schulpis K H, Behrakis P. Protective effect of L-cysteine and glutathione on rat brain Na+,K+-ATPase inhibition induced by free radicals.  Z Naturforsch [C]. 2000;  55 271-277
  • 42 Tsakiris S, Kontopoulos A N. Time changes in Na+,K+-ATPase, Mg2+-ATPase and acetylcholinesterase activities in the rat cerebrum and cerebellum caused by stress.  Pharmacol Biochem Behav. 1993;  44 339-342
  • 43 Tsakiris S, Schulpis K H, Marinou K, Behrakis P. Protective effect of L-cysteine and glutathione on the modulated suckling rat brain Na+,K+-ATPase and Mg2+-ATPase activities induced by the in vitro galactosaemia.  Pharmacol Res. 2004;  49 475-479
  • 44 Tsakiris S, Schulpis K H, Tjamouranis J, Michelakakis H, Karikas G A. Reduced acetylcholinesterase activity in erythrocyte membranes from patients with phenylketonuria.  Clin Biochem. 2002;  35 615-619

Prof. Stylianos Tsakiris

Department of Experimental Physiology
Medical School
University of Athens

PO Box 65257

15401 Athens

Greece

Email: stsakir@cc.uoa.gr

    >