Plant Biol (Stuttg) 2007; 9(5): 608-619
DOI: 10.1055/s-2007-965432
Review Article

Georg Thieme Verlag Stuttgart KG · New York

Sulfur-Enhanced Defence: Effects of Sulfur Metabolism, Nitrogen Supply, and Pathogen Lifestyle

C. Kruse1 , R. Jost2 , M. Lipschis1 , B. Kopp1 , M. Hartmann1 , R. Hell1
  • 1Heidelberg Institute of Plant Science, University of Heidelberg, Im Neuenheimer Feld 360, 69120 Heidelberg, Germany
  • 2Research School of Biological Sciences, Australian National University, Canberra ACT 2601, Australia
Further Information

Publication History

Received: October 13, 2006

Accepted: April 30, 2007

Publication Date:
13 September 2007 (online)

Abstract

Evidence from field experiments indicates differential roles of sulfur and nitrogen supply for plant resistance against pathogens. Dissection of these observations in defined pathosystems and controlled nutritional conditions indicates an activation of plant sulfur metabolism in several incompatible and compatible interactions. Contents of cysteine and glutathione as markers of primary sulfate assimilation and stress response show increases in Arabidopsis thaliana upon infection, coinciding with the synthesis of sulfur-containing defence compounds. Similar increases of thiols were observed with necrotrophic, biotrophic, and hemibiotrophic pathogens. Sulfate supply was found to be neutral or beneficial for tolerance against fungal but neutral for bacterial pathogens under in vitro conditions. According to various reports and own observations the effects of nitrogen supply appeared to be neutral or harmful, depending on the pathogen. The activation of sulfur metabolism was a consequence of activation of gene expression as revealed by macroarray analysis of an A. thaliana/Alternaria brassicicola pathosystem. This activation appeared to be largely independent from sufficient or optimal sulfate supply and from the established sulfate deficiency response. The data suggest that plant-pathogen interactions and sulfur metabolism are linked by jasmonic acid as signal.

References

  • 1 Almeida M. S., Cabral K. M., Kurtenbach E., Almeida F. C., Valente A. P.. Solution structure of Pisum sativum defensin 1 by high resolution NMR: plant defensins, identical backbone with different mechanisms of action.  Journal of Molecular Biology. (2002);  315 749-757
  • 2 Anderson J. P., Badruzsaufari E., Schenk P. M., Manners J. M., Desmond O. J., Ehlert C., Maclean D. J., Ebert P. R., Kazan K.. Antagonistic interaction between abscisic acid and jasmonate-ethylene signaling pathways modulates defense gene expression and disease resistance in Arabidopsis.  Plant Cell. (2004);  16 3460-3479
  • 3 Baker B., Zambryski P., Staskawicz B., Dinesh-Kumar S. P.. Signaling in plant-microbe interactions.  Science. (1997);  276 726-733
  • 4 Ball L., Accotto G.-P., Bechtold U., Creissen G., Funck D., Jimenez A., Kular B., Leyland N., Mejia-Carranza J., Reynolds H., Karpinski S., Mullineaux P. M.. Evidence for a direct link between glutathione biosynthesis and stress defense gene expression in Arabidopsis.  Plant Cell. (2004);  16 2448-2462
  • 5 Blake-Kalff M. M., Harrison K. R., Hawkesford M. J., Zhao F. J., McGrath S. P.. Distribution of sulfur within oilseed rape leaves in response to sulfur deficiency during vegetative growth.  Plant Physiology. (1998);  118 1337-1344
  • 6 Bloem E., Haneklaus S., Schnug E.. Significance of sulfur compounds in the protection of plants against pests and diseases.  Journal of Plant Nutrition. (2005);  28 763-784
  • 7 Bloem E., Haneklaus S., Salac I., Wickenhäuser P., Schnug E.. Facts and fiction about sulfur metabolism in relation to plant-pathogen interactions.  Plant Biology. (2007);  9 596-607
  • 8 Bloem E., Riemenschneider A., Volker J., Papenbrock J., Schmidt A., Salac I., Haneklaus S., Schnug E.. Sulphur supply and infection with Pyrenopeziza brassicae influence L-cysteine desulphydrase activity in Brassica napus L.  Journal of Experimental Botany. (2004);  55 2305-2312
  • 9 Bohlmann H.. The role of thionins in the resistance of plants. Datta, S. K. and Muthukrishnan, S., eds. Pathogenesis-Related Proteins in Plants. Boca Raton, London, New York, Washington DC; CRC Press (1999): 207-234
  • 10 Bohlmann H., Apel K.. Thionins.  Annual Review of Plant Physiology and Plant Molecular Biology. (1991);  42 227-240
  • 11 Brader G., Mikkelsen M., Halkier B., Tapio Palva E.. Altering glucosinolate profiles modulates disease resistance in plants.  The Plant Journal. (2006);  46 758-767
  • 12 Carmona M. J., Molina A., Fernandez J. A., Lopez-Fando J. J., Garcia-Olmedo F.. Expression of the alpha-thionin gene from barley in tobacco confers enhanced resistance to bacterial pathogens.  The Plant Journal. (1993);  3 457-462
  • 13 Collins N., Thordal-Christens H., Lipka V., Bau S., Kombrink E., Qiu J., Huckelhoven R., Stein M., Freialdenhoven A., Somerville S., Schulze-Lefert P.. SNARE-protein-mediated disease resistance at the plant cell wall.  Nature. (2003);  425 973-977
  • 14 Da Silva Conceicao A., Broekaert W.. Plant defensins. Datta, S. K. and Muthukrishnan, S., eds. Pathogenesis-Related Proteins in Plants. Boca Raton, London, New York, Washington DC; CRC Press (1999): 247-260
  • 15 Dietrich R., Ploss K., Heil M.. Constitutive and induced resistance to pathogens in Arabidopsis thaliana depends on nitrogen supply.  Plant, Cell and Environment. (2004);  27 896-906
  • 16 Dubuis P.-H., Marazzi C., Städler E., Mauch F.. Sulphur deficiency causes a reduction in antimicrobial potential and leads to increased disease susceptibility of oilseed rape.  Journal of Phytopathology. (2005);  153 27-36
  • 17 Epple P., Apel K., Bohlmann H.. Overexpression of an endogenous thionin enhances resistance of Arabidopsis against Fusarium oxysporum.  Plant Cell. (1997 a);  9 509-520
  • 18 Epple P., Apel K., Bohlmann H.. ESTs reveal a multigene family for plant defensins in Arabidopsis thaliana.  FEBS Letters. (1997 b);  400 168-172
  • 19 Florack D. E., Stiekema W. J.. Thionins: properties, possible biological roles and mechanisms of action.  Plant Molecular Biology. (1994);  26 25-37
  • 20 Foyer C. H., Noctor G.. Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses.  Plant Cell. (2005);  17 1866-1875
  • 21 Garcia-Olmedo F., Rodriguez-Palenzuela P., Hernandez-Lucas C., Ponz F., Marana C., Carmona M. J., Lopez-Fando J. J., Fernandez J. A., Carbonero P.. The Thionins: a protein family that includes purothionins, viscotoxins and crambins.  Oxford Surveys of Plant Molecular and Cell Biology. (1989);  6 31-60
  • 22 Garcia-Olmedo F., Molina A., Alamillo J. M., Rodriguez-Palenzuela P.. Plant defense peptides.  Biopolymers. (1998);  47 479-491
  • 23 Glawischnig E., Hansen B. G., Olsen C. E., Halkier B. A.. Camalexin is synthesized from indole-3-acetaldoxime, a key branching point between primary and secondary metabolism in Arabidopsis.  Proceedings of the National Academy of Sciences of the USA. (2004);  101 8245-8250
  • 24 Glazebrook J.. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens.  Annual Review of Phytopathology. (2005);  43 205-227
  • 25 Glazebrook J., Ausubel F.. Isolation of phytoalexin-deficient mutants of Arabidopsis thaliana and characterization of their interactions with bacterial pathogens.  Proceedings of the National Academy of Sciences of the USA. (1994);  91 8955-8959
  • 26 Grubb C., Abel S.. Glucosinolate metabolism and its control.  Trends in Plant Science. (2006);  11 89-100
  • 27 Gurr S. J., Rushton P. J.. Engineering plants with increased disease resistance: what are we going to express?.  Trends in Biotechnology. (2005);  23 275-282
  • 28 Halkier B., Gershenzon J.. Biology and biochemistry of glucosinolates.  Annual Review of Plant Biology. (2006);  57 303-333
  • 29 Hancock R. E., Falla T., Brown M.. Cationic bactericidal peptides.  Advances in Microbial Physiology. (1995);  37 135-175
  • 30 Haneklaus S., Walker K. C., Schnug E.. A chronicle of sulfur research in agriculture. Saito, K., De Kok, L. J., Stulen, I., Hawkesford, M., Schnug, E., Sirko, A., and Rennenberg, H., eds. Sulfur Transport and Assimilation in Plants in the Post Genomic Era. Leiden; Backhuys Publishers (2005): 249-256
  • 31 Hawkesford M. J., De Kok L. J.. Managing sulphur metabolism in plants.  Plant, Cell and Environment. (2006);  29 382-395
  • 32 Heil M.. The ecological concept of costs of induced systemic resistance (ISR).  European Journal of Plant Pathology. (2001);  107 137-146
  • 33 Heil M., Bostock R. M.. Induced systemic resistance (ISR) against pathogens in the context of induced plant defences.  Annals of Botany. (2002);  89 503-512
  • 34 Hell R.. Molecular physiology of plant sulfur metabolism.  Planta. (1997);  202 138-148
  • 35 Hell R., Kruse C., Jost R., Lipschis M.. Molecular analysis of sulfur-based defense reactions in plant-pathogen interactions. Saito, K., De Kok, L. J., Stulen, I., Hawkesford, M., Schnug, E., Sirko, A., and Rennenberg, H., eds. Sulfur Transport and Assimilation in Plants in the Post Genomic Era. Leiden; Backhuys Publishers (2005): 209-216
  • 36 Hughes P., Dennis E., Whitecross M., Llewellyn D., Gage P.. The cytotoxic plant protein, beta-purothionin, forms ion channels in lipid membranes.  The Journal of Biological Chemistry. (2000);  275 823-827
  • 37 Jost R., Scholze P., Hell R.. New approaches to study “sulfur-induced resistance” against fungal pathogens in Arabidopsis thaliana. Davidian, J.-C., Grill, D., De Kok, L. J., Stulen, I., Hawkesford, M., Schnug, E., and Renneberg, H., eds. Sulfur Transport and Assimilation in Plants. Leiden; Backhuys Publishers (2003): 247-249
  • 38 Jost R., Altschmied L., Bloem E., Bogs J., Gershenzon J., Hahnel U., Hansch R., Hartmann T., Kopriva S., Kruse C., Mendel R., Papenbrock J., Reichelt M., Rennenberg H., Schnug E., Schmidt A., Textor S., Tokuhisa J., Wachter A., Wirtz M., Rausch T., Hell R.. Expression profiling of metabolic genes in response to methyl jasmonate reveals regulation of genes of primary and secondary sulfur-related pathways in Arabidopsis thaliana.  Photosynthesis Research. (2005);  86 491-508
  • 39 Kataoka T., Watanabe-Takahashi A., Hayashi N., Ohnishi M., Mimura T., Buchner P., Hawkesford M. J., Yamaya T., Takahashi H.. Vacuolar sulfate transporters are essential determinants controlling internal distribution of sulfate in Arabidopsis.  Plant Cell. (2004);  16 2693-2704
  • 40 Kim H. S., Delaney T. P.. Arabidopsis SON1 is an F‐box protein that regulates a novel induced defense response independent of both salicylic acid and systemic acquired resistance.  Plant Cell. (2002);  14 1469-1482
  • 41 Klikocka H., Haneklaus S., Bloem E., Schnug E.. Influence of sulfur fertilization on infection of potato tubers with Rhizoctonia solani and Streptomyces scabies.  Journal of Plant Nutrition. (2005);  28 819-833
  • 42 Konishi H., Ishiguro K., Komatsu S.. A proteomics approach towards understanding blast fungus infection of rice grown under different levels of nitrogen fertilization.  Proteomics. (2001);  1 1162-1171
  • 43 Kruse C., Jost R., Hillebrand H., Hell R.. Sulfur-rich proteins and their agrobiotechnological potential for resistance to plant pathogens.  FAL Agricultural Research. (2005 a);  283 73-80
  • 44 Kruse C., Kopp B., Hartmann M., Jost R., Hell R.. Sulfate-based performance of Arabidopsis thaliana in response to pathogen infection. Saito, K., De Kok, L. J., Stulen, I., Hawkesford, M., Schnug, E., Sirko, A., and Rennenberg, H., eds. Sulfur Transport and Assimilation in Plants in the Post Genomic Era. Leiden; Backhuys Publishers (2005 b): 217-220
  • 45 Long D. H., Lee F. N., TeBeest D. O.. Effect of nitrogen fertilization on disease progress of rice blast on susceptible and resistant cultivars.  Plant Disease. (2000);  84 403-409
  • 46 Lorenzo O., Piqueras R., Sanchez-Serrano J. J., Solano R.. ETHYLENE RESPONSE FACTOR1 integrates signals from ethylene and jasmonate pathways in plant defense.  Plant Cell. (2003);  15 165-178
  • 47 Mansfield J. W.. Antimicrobial compounds and resistance. Slusarenko, A. J., Fraser, R. S. S., and van Loon, L. C., eds. Mechanisms of Plant Diseases. Dordrecht; Kluwer Academic Publishers (2000): 325-370
  • 48 Marschner H., Kirkby E. A., Engels C.. Importance of cycling and recycling of mineral nutrients within plants for growth and development.  Botanica Acta. (1997);  110 265-273
  • 49 Mauch F., Mauch-Mani B., Boller T.. Antifungal hydrolases in pea tissue.  Plant Physiology. (1988);  88 936-942
  • 50 Mauch-Mani B., Slusarenko A.. Arabidopsis as a model host for studying plant-pathogen interactions.  Trends in Microbiology. (1993);  1 265-270
  • 51 Mauch-Mani B., Slusarenko A. J.. Production of salicylic acid precursors is a major function of phenylalanine ammonia-lyase in the resistance of Arabidopsis to Peronospora parasitica.  Plant Cell. (1996);  8 203-212
  • 52 May M. J., Vernoux T., Sanchez-Fernandez R., Van Montagu M., Inze D.. Evidence for posttranscriptional activation of γ-glutamylcysteine synthetase during plant stress responses.  Proceedings of the National Academy of Sciences of the USA. (1998);  95 12049-12054
  • 53 Meyer A., Hell R.. Glutathione homeostasis and redox-regulation by sulfhydryl groups.  Photosynthesis Research. (2005);  86 435-457
  • 54 Mittelstraß K., Treutter D., Pleßl M., Heller W., Elstner E. F., Heiser I.. Modification of primary and secondary metabolism of potato plants by nitrogen application differentially affects resistance to Phytophthora infestans and Alternaria solani.  Plant Biology. (2006);  8 653-661
  • 55 Mou Z., Fan W., Dong X.. Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes.  Cell. (2003);  113 935-944
  • 56 Nicolas P., Mor A.. Peptides as weapons against microorganisms in the chemical defense system of vertebrates.  Annual Review of Microbiology. (1995);  49 277-304
  • 57 Osbourn A. E.. Preformed antimicrobial compounds and plant defense against fungal attack.  Plant Cell. (1996);  8 1821-1831
  • 58 Parisy V., Poinssot B., Owsianowski L., Buchala A., Glazebrook J., Mauch F.. Identification of PAD2 as a γ-glutamylcysteine synthetase highlights the importance of glutathione in disease resistance of Arabidopsis.  The Plant Journal. (2006);  49 159-172
  • 59 Penninckx I. A., Eggermont K., Terras F. R., Thomma B. P., De Samblanx G. W., Buchala A., Metraux J. P., Manners J. M., Broekaert W. F.. Pathogen-induced systemic activation of a plant defensin gene in Arabidopsis follows a salicylic acid-independent pathway.  Plant Cell. (1996);  8 2309-2323
  • 60 Peschen D., Li H., Fischer R., Kreuzaler F., Liao Y.. Fusion proteins comprising a Fusarium-specific antibody linked to antifungal peptides protect plants against a fungal pathogen.  Nature Biotechnology. (2004);  22 732-738
  • 61 Pieterse C. M. J., van Wees S. C. M., Hoffland E., van Pelt J. A., van Loon L. C.. Systemic resistance in Arabidopsis induced by biocontrol bacteria is independent of salicylic acid accumulation and pathogenesis-related gene expression.  Plant Cell. (1996);  8 1225-1237
  • 62 Rausch T., Wachter A.. Sulfur metabolism: a versatile platform for launching defence operations.  Trends in Plant Science. (2005);  10 503-509
  • 63 Reimann-Philipp U., Schrader G., Martinoia E., Barkholt V., Apel K.. Intracellular thionins of barley.  The Journal of Biological Chemistry. (1989);  264 8978-8984
  • 64 Riemenschneider A., Riedel K., Hoefgen R., Papenbrock J., Hesse H.. Impact of reduced O-acetylserine(thiol)lyase isoform contents on potato plant metabolism.  Plant Physiology. (2005);  137 892-900
  • 65 Sasaki-Sekimoto Y., Taki N., Obayashi T., Aono M., Matsumoto F., Sakurai N., Suzuki H., Hirai M. Y., Noji M., Saito K., Masuda T., Takamiya K.-I., Shibata D., Ohta H.. Coordinated activation of metabolic pathways for antioxidants and defence compounds by jasmonates and their roles in stress tolerance in Arabidopsis.  The Plant Journal. (2005);  44 653-668
  • 91 Schenk P. M., Kazan K., Manners J. M., Anderson J. P., Simpson R. S., Wilson I. W., Somerville S. C., Maclean D. J.. Systemic gene expression in Arabidopsis during an incompatible interaction with Alternaria brassicicola.  Plant Physiology. (2003);  132 999-1010
  • 92 Schenk P. M., Kazan K., Wilson I., Anderson J. P., Richmond T., Somerville S. C., Manners J. M.. Coordinated plant defense responses in Arabidopsis revealed by microarray analysis.  Proceedings of the National Academy of Sciences of the USA. (2000);  97 11655-11660
  • 66 Schnug E., Haneklaus S., Booth E., Walker K. C.. Sulphur supply and stress resistance in oilseed rape. In 9th Int. Rapeseed Congress, Cambridge. (1995): 229-231
  • 67 Schröder P.. Plants as sources of atmospheric sulfur. De Kok, L. J., Stulen, I., Rennenberg, H., Brunold, C., and Rauser, W. E., eds. Sulfur Nutrition and Assimilation in Higher Plants. Den Haag; SPB Academic Publisher (1993): 253-270
  • 68 Sellam A., Iacomi-Vasilescu B., Hudhomme P., Simoneau P.. In vitro antifungal activity of brassinin, camalexin and two isothiocyanates against the crucifer pathogens Alternaria brassicicola and Alternaria brassicae.  Plant Pathology. (2007);  56 296-301
  • 69 Stec B., Markman O., Rao U., Heffron G., Henderson S., Vernon L. P., Brumfeld V., Teeter M. M.. Proposal for molecular mechanism of thionins deduced from physico-chemical studies of plant toxins.  Journal of Peptide Research. (2004);  64 210-224
  • 70 Summermatter K., Sticher L., Métraux J.-P.. Systemic responses in Arabidopsis thaliana infected and challenged with Pseudomonas syringae pv syringae.  Plant Physiology. (1995);  108 1379-1385
  • 71 Tailor R. H., Acland D. P., Attenborough S., Cammue B. P., Evans I. J., Osborn R. W., Ray J. A., Rees S. B., Broekaert W. F.. A novel family of small cysteine-rich antimicrobial peptides from seed of Impatiens balsamina is derived from a single precursor protein.  The Journal of Biological Chemistry. (1997);  272 24480-24487
  • 72 Takahashi H., Watanabe-Takahashi A., Smith F. W., Blake-Kalff M., Hawkesford M. J., Saito K.. The roles of three functional sulphate transporters involved in uptake and translocation of sulphate in Arabidopsis thaliana.  The Plant Journal. (2000);  23 171-182
  • 73 Terras F. R. G., Eggermont K., Kovaleva V., Raikhel N. V., Osborn R. W., Kester A., Rees S. B., Torrekens S., Van Leuven F., Vanderleyden J., Cammue B. P. A., Broekaert W. F.. Small cysteine-rich antifungal proteins from radish: their role in host defense.  Plant Cell. (1995);  7 573-588
  • 74 Thevissen K., Terras F. R., Broekaert W. F.. Permeabilization of fungal membranes by plant defensins inhibits fungal growth.  Applied and Environmental Microbiology. (1999);  65 5451-5458
  • 75 Thevissen K., Ghazi A., De Samblanx G. W., Brownlee C., Osborn R. W., Broekaert W. F.. Fungal membrane responses induced by plant defensins and thionins.  The Journal of Biological Chemistry. (1996);  271 15018-15025
  • 76 Thomma B., Broekaert W.. Tissue-specific expression of plant defensin genes PDF1.2 and PDF2.2 in Arabidopsis thaliana.  Plant Physiology and Biochemistry. (1998);  36 533-537
  • 77 Thomma B. P. H. J., Eggermont K., Penninckx I. A. M. A., Mauch-Mani B., Vogelsang R., Cammue B. P. A., Broekaert W. F.. Separate jasmonate-dependent and salicylate-dependent defense-response pathways in Arabidopsis are essential for resistance to distinct microbial pathogens.  Proceedings of the National Academy of Sciences of the USA. (1998);  95 15107-15111
  • 78 Thomma B., Nelissen I., Eggermont K., Broekaert W.. Deficiency in phytoalexin production causes enhanced susceptibility of Arabidopsis thaliana to the fungus Alternaria brassicicola.  The Plant Journal. (1999);  19 163-171
  • 79 Thomma B. P., Cammue B. P., Thevissen K.. Plant defensins.  Planta. (2002);  216 193-202
  • 80 van Wees S. C. M., Chang H.-S., Zhu T., Glazebrook J.. Characterization of the early response of Arabidopsis to Alternaria brassicicola infection using expression profiling.  Plant Physiology. (2003);  132 606-617
  • 81 Vernon L. P., Rogers A.. Binding properties of Pyrularia thionin and Naja naja kaouthia cardiotoxin to human and animal erythrocytes and to murine P388 cells.  Toxicon. (1992);  30 711-721
  • 82 Wallsgrove R. M., Doughty K., Bennett R. N.. Glucosinolates. Singh, B. K., ed. Plant Amino Acids. New York, Basel, Hong Kong; Marcel Dekker Inc. (1999): 523-561
  • 83 Wildermuth M., Dewdney J., Wu G., Ausubel F.. Isochorismate synthase is required to synthesize salicylic acid for plant defence.  Nature. (2001);  414 562-565
  • 84 Williams J. S., Cooper R. M.. Elemental sulphur is produced by diverse families as a component of defence against fungal and bacterial pathogens.  Physiological Molecular Plant Pathology. (2003);  63 3-16
  • 85 Williams J. S., Cooper R. M.. The oldest fungicide and newest phytoalexin - a reappraisal of the fungitoxicity of elemental sulphur.  Plant Pathology. (2004);  53 263-279
  • 86 Williams J. S., Hall S. A., Hawkesford M. J., Beale M. H., Cooper R. M.. Elemental sulfur and thiol accumulation in tomato and defense against a fungal vascular pathogen.  Plant Physiology. (2002);  128 150-159
  • 87 Wirth S. J., Wolf G. A.. Dye-labelled substrates for the assay and detection of chitinase and lysozyme activity.  Journal of Microbiological Methods. (1990);  12 197-205
  • 88 Wirtz M., Hell R.. Functional analysis of the cysteine synthase protein complex from plants: structural, biochemical and regulatory properties.  Journal of Plant Physiology. (2006);  163 273-286
  • 89 Wirtz M., Droux M., Hell R.. O-acetylserine (thiol)lyase: an enigmatic enzyme of plant cysteine biosynthesis revisited in Arabidopsis thaliana.  Journal of Experimental Botany. (2004);  55 1785-1798
  • 90 Woynarowski J. M., Konopa J.. Interaction between DNA and viscotoxins. Cytotoxic basic polypeptides from Viscum album L.  Hoppe-Seyler's Zeitschrift für Physiologische Chemie. (1980);  361 1535-1545

R. Hell

Heidelberg Institute of Plant Science
University of Heidelberg

Im Neuenheimer Feld 360

69120 Heidelberg

Germany

Email: rhell@hip.uni-hd.de

Guest Editor: T. Rausch

    >