Horm Metab Res 2008; 40(7): 454-458
DOI: 10.1055/s-2008-1065323
Original Basic

© Georg Thieme Verlag KG Stuttgart · New York

Type 1 Diabetes Alters Brain Cannabinoid Receptor Expression and Phosphorylation Status in Rats

C. Díaz-Asensio 1 , R. Setién 1 , E. Echevarría 1 , L. Casis 1 , E. Casis 2 , A. Garrido 2 , O. Casis 1
  • 1Department of Physiology, School of Pharmacy, University of the Basque Country, Bilbao, Spain
  • 2Clinical Chemistry Laboratory, Hospital Donostia, San Sebastián, Spain
Further Information

Publication History

received 01.06.2007

accepted 04.12.2007

Publication Date:
27 March 2008 (online)

Abstract

One of the most common symptoms of diabetes is extreme hunger, but the brain mechanism underlying this hyperphagia is unknown. The endocannabinoid system has emerged as one of the main food intake regulators in the brain. However, the effects of type 1 diabetes on the endocannabinoid system are not completely known. Thus, the aim of the present work is to establish the possible alterations induced by type 1 diabetes on the brain endocannabinoid system in rats. Western blot and immunocytochemistry were used to measure CB1 and phosphorylated CB1 receptor expression in several prosencephalic regions in streptozotocin-induced type 1 diabetic rats. Serum leptin levels were measured by ELISA. CB1 receptor expression was increased in striatum and hypothalamus of diabetic animals, with no changes in other brain areas studied. CB1 receptor phosphorylation was also increased in the same brain areas. Type 1 diabetes induced significant weight loss, and serum leptin levels were severely decreased. These results reinforce the possible role of the CB1 receptor as a pharmacological target for the clinical management of appetite in diabetic patients.

References

  • 1 Gan D, Regniers C. Eds. 2003 Diabetes Atlas. International Diabetes Federation http://www.eatlas.idf.org/Prevalence/
  • 2 Schwartz MW, Woods SC, Porte  Jr  D, Seeley RJ, Baskin DG. Central nervous system control of food intake.  Nature. 2000;  404 661-671
  • 3 Berry EM, Mechoulam R. Tetrahydrocannabinol and endocannabinoids in feeding and appetite.  Pharmcol Ther. 2002;  95 185-190
  • 4 Vickers SP, Kennett GA. Cannabinoids and the regulation of ingestive behaviour.  Curr Drug Targets. 2005;  6 215-223
  • 5 Marzo V Di, Matias I. Endocannabinoid control of food intake and energy balance.  Nature Neurosci. 2005;  8 585-589
  • 6 Pagotto U, Marsicano G, Cota D, Lutz B, Pasquali R. The emerging role of the endocannabinoid system in endocrine regulation and energy balance.  Endocr Rev. 2006;  27 73-100
  • 7 Williams CM, Kirkham TC. Anandamide induced overeating: mediation by central cannabinoid receptors.  Psychopharmacology. 1999;  143 315-317
  • 8 Kirkham TC, Williams CM. Synergistic efects of opioid and cannabinoid antagonists on food intake.  Psychopharmacology. 2001;  153 267-270
  • 9 Jamshidi N, Taylor DA. Anandamide administration into the ventromedial hypothalamus stimulates appetite in rats.  Brit J Pharmacol. 2001;  134 1151-1154
  • 10 Beinfeld MC, Connolly K. Activation of CB1 cannabinoid receptors in rat hippocampal slices inhibits potassium-evoked cholecystokinin release, a possible mechanism contributing to the spatial memory defects produced by cannabinoids.  Neurosci Lett. 2001;  301 69-71
  • 11 Matias I, Gonthier MP, Orlando P, Martiadis V, Petrocellis L De, Cervino C, Petrosino S, Hoareau L, Festy F, Pasquali R, Roche R, Maj M, Pagotto U, Monteleone P, Marzo V Di. Regulation, function, and dysregulation of endocannabinoids in models of adipose and beta-pancreatic cells and in obesity and hyperglycemia.  J Clin Endocrinol Metab. 2006;  91 3171-3180
  • 12 Matias I, Marzo V Di. Endocannabinoids and the control of energy balance.  Trends Endocrinol Metab. 2007;  18 27-37
  • 13 Tanda G, Pontieri FE, Chiara G Di. Cannabinoid and heroin activation of mesolimbic dopamine transmission by a commun mu1 opioid receptor mechanism.  Science. 1997;  276 2048-2050
  • 14 Casis O, Gallego M, Iriarte M, Sanchez-Chapula JA. Effects of diabetic cardiomyopathy on regional electrophysiologic characteristics of rat ventricle.  Diabetologia. 2000;  43 101-109
  • 15 Gallego M, Casis O. Regulation of cardiac transient outward potassium current by norepinephrine in normal and diabetic rats.  Diabetes-Metab Res. 2001;  17 304-309
  • 16 Berridge KC. Food reward: brain substrates of wanting and liking.  Neurosci Biobehav Rev. 1996;  20 1-25
  • 17 Cooper SJ. Endocannabinoids and food consumption: comparisons with benzodiazepine and opioid palatability-dependent appetite.  Eur J Pharmacol. 2004;  500 37-49
  • 18 Morales M, Wang SD, Díaz-Ruiz O, Jho DH. Cannabinoid CB1 receptor and serotonin 3 receptor subunit A (5-HT3A) are co-expressed in GABA neurons in the rat telencephalon.  J Comp Neurol. 2004;  468 205-216
  • 19 Katona I, Rancz EA, Acsady L, Ledent C, Mackie K, Hajos N, Freund TF. Distribution of CB1 cannabinoid receptors in the amygdala and their role in the control of GABAergic transmission.  J Neurosci. 2001;  21 9506-9518
  • 20 Katona I, Sperlagh B, Sik A, Kafalvi A, Vizi ES, Mackie K, Freund TF. Presynaptically located CB1 cannabinoid receptors regulate GABA release from axon terminals of specific hippocampal interneurons.  J Neurosci. 1999;  19 4544-4558
  • 21 Kokare DM, Patole A, Carta A, Chopde C, Subhedar NK. GABA(A) receptors mediate orexin-A induced stimulation of food intake.  Neuropharmacology. 2006;  50 16-24
  • 22 Epstein LH, Leddy JJ. Food reinforcement.  Appetite. 2006;  46 22-25
  • 23 Wang GJ, Volkow ND, Fowler JS. The role of dopamine in motivation for food in humans: implications for obesity.  Expert Opin Ther Tar. 2002;  6 601-609
  • 24 Kearn CS, Blake-Palmer K, Daniel E, Mackie K, Glass M. Concurrent stimulation of cannabinoid CB1 and dopamine D2 receptors enhances heterodimer formation: a mechanism for receptor cross-talk?.  Mol Pharmacol. 2005;  67 1697-1704
  • 25 Harrold JA, Elliott JC, King PJ, Widdowson PS, Williams G. Down-regulation of cannabinoid-1 (CB-1) receptors in specific extrahypothalamic regions of rats with dietary obesity: a role for endogenous cannabinoids in driving appetite for palatable food?.  Brain Res. 2002;  952 232-238
  • 26 Rodríguez de Fonseca F. The endocannabinoid system and food intake control.  Rev Med Univ Nav. 2004;  48 18-23
  • 27 Darmani NA, Janoyan JJ, Kumar N, Crim JL. Behaviourally active doses of the CB1 receptor antagonist SR 141716A increase brain serotonin and dopamine levels and turnover.  Pharmacol Biochem Behav. 2003;  75 777-787
  • 28 Jarrahian A, Watts VJ, Barker EL. D2 dopamine receptors modulate G alpha-subunit coupling of the CB1 cannabinoid receptor.  J Pharmacol Exp Ther. 2004;  308 880-886
  • 29 Engler B, Freiman I, Urbanski M, Szabo B. Effects of exogenous and endogenous cannabinoids on GABAergic neurotransmission between the caudate-putamen and the globus pallidus in the mouse.  J Pharmacol Exp Ther. 2006;  316 608-617
  • 30 Kelley AE, Bakshi V, Haber SN, Steininger TL, Will MJ, Zhang M. Opioid modulation of taste hedonics within the ventral striatum.  Physiol Behav. 2002;  76 365-377
  • 31 Peciña S, Berridge KC. Hedonic hot spot in nucleus accumbens shell: Where do mu-opioids cause increased hedonic impact of sweetness?.  J Neurosci. 2005;  25 11777-11786
  • 32 Will MJ, Franzblau B, Kelley AE. Nucleus accumbens mu-opioids regulate intake of a high-fat diet via activation of a distributed brain network.  J Neurosci. 2003;  23 2882-2888
  • 33 Pliquett RU, Fuhrer D, Falk S, Zysset S, Cramon DY Von, Stumvoll M. The effects of insulin on the central nervous system. Focus on appetite regulation.  Horm Metab Res. 2006;  38 442-446
  • 34 Cabanelos A, Lisboa PC, Moura EG, Pazos-Moura CC. Leptin acute modulation of the 5′-deiodinase activities in hypothalamus, pituitary and brown adipose tissue of fed rats. Leptin acute modulation of the 5′-deiodinase activities in hypothalamus, pituitary and brown adipose tissue of fed rats.  Horm Metab Res. 2006;  38 481-485
  • 35 Kempf K, Hector J, Strate T, Schwarzloh B, Rose B, Herder C, Martin S, Algenstaedt P. Immune-mediated activation of the endocannabinoid system in visceral adipose tissue in obesity.  Horm Metab Res. 2007;  39 596-600
  • 36 Williams G, Harrold JA, Cutler DJ. The hypothalamus and the regulation of energy homeostasis: lifting the lid on a black box.  Proc Nutr Soc. 2000;  59 385-396
  • 37 Marzo V Di, Goparaju SK, Wang L, Liu J, Batkai S, Jarai Z, Fezza F, Miura GI, Palmiter RD, Sugiura T, Kunos G. Leptin-regulated endocannabinoids are involved in maintaining food intake.  Nature. 2001;  410 822-825
  • 38 Campfield LA, Smith FJ, Guisez Y, Devos R, Burn P. Recombinant mouse OB protein: evidence for a peripheral signal linking adiposity and central neural networks.  Science. 1995;  269 546-549
  • 39 Jo YH, Chen YJJ, Chua SC, Talmage DA, Role LW. Integration of endocannabinoid and leptin signaling in an appetite-related neural circuit.  Neuron. 2005;  48 1055-1066
  • 40 Lynch WC, Hart P, Babcock AM. Neuropeptide Y attenuates satiety: evidence from a detailed analysis of ingestive patterns.  Brain Res. 1994;  636 28-34
  • 41 Nie J, Lewis DL. Structural domains of the CB1 cannabinoid receptor that contribute to constitutive activity and G-protein sequestration.  J Neurosci. 2001;  21 8758-8764
  • 42 Garcia DE, Brown S, Hille B, Mackie K. Protein kinase C disrupts cannabinoid actions by phosphorylation of the CB1 cannabinoid receptor.  J Neurosci. 1998;  18 2834-2841

Correspondence

Dr. O. Casis

Departamento de Fisiología

Universidad del País Vasco

P.O. Box 699

48080 Bilbao

Spain

Phone: +34/94/601 28 44

Fax: +34/94/601 56 62

Email: oscar.casis@ehu.es