Aktuelle Neurologie 2008; 35(8): 399-404
DOI: 10.1055/s-2008-1067528
Übersicht

© Georg Thieme Verlag KG Stuttgart · New York

„Massed practice” in der motorischen Rehabilitation: Der Schlüssel zum Erfolg?

„Massed Practice” a Prerequisite for Neurorehabilitation?C.  Renner1 , H.  Hummelsheim1
  • 1Neurologisches Rehabilitationszentrum, Universität Leipzig
Further Information

Publication History

Publication Date:
23 September 2008 (online)

Einleitung

In Deutschland erleiden jährlich über 200 000 Menschen einen Schlaganfall. Entsprechend den errechneten Erwartungen des Erlanger Schlaganfallregisters wird die Anzahl der Schlaganfallüberlebenden in den nächsten 2 Dekaden kontinuierlich wachsen, was einerseits der alternden Bevölkerung und andererseits der sinkenden Schlaganfallmortalitätsrate zuzuschreiben ist [1]. Trotz verbesserter Notfall- und Akutbehandlung führen Schlaganfälle zu erheblichen motorischen Einschränkungen, die sich auf die Teilhabe in der Gesellschaft auswirken. Ziel der neurologischen Rehabilitation ist die Selbstständigkeit des Patienten so weit wie möglich wiederherzustellen. In der motorischen Rehabilitation bildet die Selbstständigkeit in den Aktivitäten des täglichen Lebens (ADLs) sowie die Mobilität das Kernstück für ergotherapeutische und physiotherapeutische Übungsbehandlungen. Wichtig ist dabei, dass nicht irgendeine Behandlung angewandt wird, sondern eine mit wissenschaftlicher Evidenz.

Literatur

  • 1 Kolominsky-Rabas P L, Heuschmann P U, Marschakk D. et al . Lifetime costs of ischemic stroke in Germany: Results and national projections from a population-based stroke registry.  Stroke. 2006;  37 1179-1183
  • 2 Carr J H, Shepherd R B. Stroke rehabilitation guidelines for exercise and training tooptimize motor skill. Oxford; Butterworth Heinemann 2003
  • 3 Langhammer B, Stanghelle J K. Bobath or motor relearning programme? A comparison of two different approaches of physiotherapy in stroke rehabilitation: a randomized controlled study.  Clin Rehabil. 2000;  14 361-369
  • 4 Bütefisch C, Hummelsheim H, Denzler P. et al . Repetitive training of isolated movements improves the outcome of motor rehabilitation of the centrally paretic hand.  J Neurol Sci. 1995;  130 59-68
  • 5 Asanuma H, Keller A. Neuronal mechanisms of motor learning in mammals.  Neuroreport. 1991;  2 217-224
  • 6 Asanuma H, Pavlides C. Neurobiological basis of motor learning in mammals.  Neuroreport. 1997;  8 i-vi
  • 7 Van Peppen R P, Kwakkel G, Wood-Dauphinee S. et al . The impact of physical therapy on functional outcomes after stroke: what's the evidence?.  ClinRehabil. 2004;  18 833-862
  • 8 Kwakkel G, Wagenaar R C, Koelman T W. et al . Effects of intensity of rehabilitation after stroke.  Stroke. 1997;  28 1550-1556
  • 9 Kraemer W J, Ratamess N A. Fundamentals of resistance training: progression and exercise prescription.  Med Sci Sports Exerc. 2004;  36 674-688
  • 10 Delecluse C, Colman V, Roelants M. et al . Exercise programs for older men: mode and intensity to induce the highest possible health-related benefits.  Prev Med. 2004;  39 823-833
  • 11 Wood R H, Reyes R, Welsch M A. et al . Concurrent cardiovascular and resistance training in healthy older adults.  Med Sci Sports Exerc. 2001;  33 1751-1758
  • 12 Elbert T, Pantev C, Wienbruch C. et al . Increased cortical representation of the fingers of the left hand in string players.  Science. 1995;  270 305-307
  • 13 Gaser C, Schlaug G. Brain Structures Differ between Musicians and Non-Musicians.  J Neurosci. 2003;  23 9240-9245
  • 14 Matthews P M, Johansen-Berg H, Reddy H. Non-invasive mapping of brain functions and brain recovery: applying lessons from cognitive neuroscience to neurorehabilitation.  Restorative Neurology and Neuroscience. 2004;  22 245-260
  • 15 Taub E. Somatosensory deafferentation research with monkeys: implications for rehabilitation medicine. In: Ince L, ed Behavioral Psychology in Rehabilitation Medicine: Clinical Applications. Baltimore, Md; Williams & Wilkins 1980: 371-401
  • 16 Wolf S L, Lecraw D E, Barton L A. et al . Forced use of hemiplegic upper extremities to reverse the effect of learned non-use among chronic stroke and head injured patients.  Exp Neurol. 1989;  104 125-132
  • 17 Taub E, Miller N E, Novack T A. et al . Technique to improve chronic motor deficit after stroke.  Arch Phys Med Rehabil. 1993;  74 347-354
  • 18 Miltner W H, Bauder H, Sommer M. et al . Effects of constraint-induced movement therapy on patients with chronic motor deficits after stroke: a replication.  Stroke. 1999;  30 586-592
  • 19 Van der Lee J H, Wagenaar R C, Lankhorst G J. et al . Forced use of the upper extremity in chronic stroke patients: results from a single-blind randomized clinical trial.  Stroke. 1999;  30 2369-2375
  • 20 Page S J, Sisto S, Levine P. et al . Efficacy of modified constraint-induced movement therapy in chronic stroke: a single-blinded randomized controlled trial.  Arch Phys Med Rehabil. 2004;  85 14-18
  • 21 Wolf S L, Winstein C J, Miller J P. et al . Effect of constraint-induced movement therapy on upper extremity function 3 to 9 months after stroke: the EXCITE randomized clinical trial.  JAMA. 2006;  296 2095-2104
  • 22 Dromerick A W, Edwards D F, Hahn M. Does the application of constraint-induced movement therapy during acute rehabilitation reduce arm impairment after ischemic stroke?.  Stroke. 2000;  31 2984-2988
  • 23 Page S J, Sisto S, Johnston M V. et al . Modified constraint-induced therapy after subacute stroke: a preliminary study.  Neurorehabil Neural Repair. 2002;  16 290-295
  • 24 Wolf S L, Winstein C J, Miller J P. et al . Retention of upper limb function in stroke survivors who have received constraint-induced movement therapy: the EXCITE randomised trial.  Lancet Neurol. 2008;  7 33-40
  • 25 Sterr A, Elbert T, Berthold I. et al . Longer versus shorter daily constraint-induced movement therapy of chronic hemiparesis: an exploratory study.  Arch Phys Med Rehabil. 2002;  83 1374-1377
  • 26 Van der Lee J H. Constraint-induced therapy for stroke: more of the same or something completely different?.  Current opinion in Neurology. 2001;  14 741-744
  • 27 Brogardh C, Sjölund B H. Constraint-induced movement therapy in patients with stroke: a pilot study on effects of small group training and of extended mitt use.  Clinical Rehabil. 2006;  20 218-227
  • 28 Platz T, Winter T, Muller N. et al . Arm ability training for stroke and traumatic brain injury patients with mild arm paresis: a single-blind, randomized, controlled trial.  Arch Phys Med Rehabil. 2001;  82 961-968
  • 29 Hogan N, Krebs H I, Charnarong J. et al .Interactive robotics therapist. Cambridge, Massachusetts; Institute of Technology US Patent No. 5 466 213 1995
  • 30 Aisen M L, Krebs H I, Hogan N. et al . The effect of robot-assisted therapy and rehabilitative training on motor recovery following stroke.  Arch Neurol. 1997;  54 443-446
  • 31 Volpe B T, Krebs H I, Hogan N. et al . A novel approach to stroke rehabilitation: robot-aided sensorimotor stimulation.  Neurology. 2000;  54 1938-1944
  • 32 Fasoli S E, Krebs H I, Stein J. et al . Effects of robotic therapy on motor impairment and recovery in chronic stroke.  Arch Phys Med Rehabil. 2003;  84 477-482
  • 33 Lum P S, Burgar C G, Kenney D E. et al . Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upper limb motor function following stroke.  Arch Phys Med Rehab. 2002;  83 952-959
  • 34 Hesse S, Werner C, Pohl M. et al . Computerized arm training improves the motor control of the severely affected arm after stoke.  Stroke. 2005;  36 1960-1966
  • 35 Masiero S, Celia A, Rosati G. et al . Robotic-assisted rehabilitation of the upper limb after acute stroke.  Arch Phys Med Rehabil. 2007;  88 142-149
  • 36 Kahn L E, Zygman M L, Rymer W Z. et al . Robot assisted reaching exercise promotes arm movement recovery in chronic hemiparetic stroke: a randomized controlled pilot study.  Journal of NeuroEngineering and Rehabilitation. 2006;  3 1-13
  • 37 Barker R N, Brauer S G, Carson R G. Training of reaching in stroke survivors with severe and chronic upper limb paresis using a novel nonrobotic device.  Stroke. 2008;  39 1800-1807
  • 38 Hesse S, Bertelt C, Jahnke M T. et al . Treadmill training with partial body weight support compared with physiotherapy in nonambulatory hemiparetic patients.  Stroke. 1995;  26 976-981
  • 39 Hesse S, Konrad M, Uhlenbrock D. Treadmill walking with partial body weight support versus floor walking in hemiparetic subjects.  Arch Phys Med Rehabil. 1999;  80 421-427
  • 40 Kosak M C, Reding M J. Comparison of partial body weight-supported treadmill gait training versus aggressive bracing assisted walking post stroke.  Neurorehabil Neural Repair. 2000;  14 13-19
  • 41 Nilsson L, Carlsson J, Danielsson A. et al . Walking training of patients with hemiparesis at an early stage after stroke: a comparison of walking training on a treadmill with body weight support and walking training on the ground.  Clin Rehabil. 2001;  15 515-527
  • 42 Pohl M, Mehrholz J, Ritschel C. et al . Speed-dependent treadmill training in ambulatory hemiparetic stroke patients: a randomized controlled trial.  Stroke. 2002;  33 553-558
  • 43 Colombo G, Joerg M, Schreier R. et al . Treadmill training of paraplegic patients using a robotic orthosis.  J Rehabil Res Dev. 2000;  37 313-319
  • 44 Husemann B, Mueller F, Krewer C. et al . Effects of locomotion training with assistance of a robot-driven gait orthosis in hemiparetic patientsafter stroke: a randomized controlled pilot study.  Stroke. 2007;  38 349-354
  • 45 Pohl M, Werner C, Holzgraefe M. et al . Repetitive locomotor training and physiotherapy improve walking and basic activities of daily living after stroke: a single-blind, randomized multicentre trial (DEutsche GAngtrainerStudie, DEGAS).  Clinical Rehabilitation. 2007;  21 17-27
  • 46 Thaut M H, McIntosh G C, Rice R R. Rhythmic facilitation of gait training in hemiparetic stroke rehabilitation.  J Neurol Sci. 1997;  151 207-212
  • 47 Thaut M H, Leins A K, Rice R R. et al . Rhythmic auditory stimulation improves gait more than NDT/Bobath training in near-ambulatory patients early post stroke: a single-blind, randomized trial.  Neurorehabil Neural Repair. 2007;  21 455-459
  • 48 Sullivan K J, Brown D A, Klassen T. et al, for the Physical Therapy Clinical Research Network (PTClinRes-Net) . Effects of task-specific locomotor and strength in training ambulatory adults after stroke: results of the STEPS randomized clinical trial.  Phys Ther. 2007;  87 2-17
  • 49 Hunter G R, McCarthy J P, Bamman M M. Effects of resistance training on older adults.  Sports Med. 2004;  34 329-348
  • 50 Sterr A, Freivogel S. Intensive training in chronic upper limb hemiparesis does not increase spasticity or synergies.  Neurology. 2004;  63 2176-2177
  • 51 Cristea M C, Levin M F. Compensatory strategies for reaching in stroke.  Brain. 2000;  123 940-953
  • 52 Kim C M, Eng J J. Magnitude and pattern of 3D kinematic and kinetic gait profiles in persons with stroke: relationship to walking speed.  Gait Posture. 2004;  20 140-146
  • 53 McCrea P H, Eng J J, Hodgson A J. Saturated muscle activation contributes to compensatory reaching strategies after stroke.  J Neurophysiol. 2005;  94 2999-3008
  • 54 Neckel N, Pelliccio M, Nichols D. et al . Quantification of functional weakness and abnormal synergy patterns in the lower limb of individuals with chronic stroke.  Journal of NeuroEngineering and Rehabilitation. 2006;  3 17
  • 55 Dipietro L, Krebs H I, Fasoli S E. et al . Changing motor synergies in chronic stroke.  J Neurophysiol. 2007;  98 757-768
  • 56 Woodlee M T, Schallert T. The interplay between behaviour and neurodegeneration in rat models of Parkinson's disease and stroke.  Restorative Neurology and Neuroscience. 2004;  22 153-161
  • 57 Cramer S C. Changes in motor system function and recovery after stroke.  Restorative Neurology and Neuroscience. 2004;  22 231-238
  • 58 Nelles G. Cortical reorganization – effects of intensive therapy, results from prospective functional imaging studies.  Restorative Neurology and Neuroscience. 2004;  22 239-244
  • 59 Plautz E J, Milliken G W, Nudo R J. Effects of repetitive motor training on movement representations in adult squirrel monkeys: role of use versus learning.  Neurobiol Learn Mem. 2000;  74 27-55
  • 60 Vearrier L A, Langan J, Shunway-Cook A. et al . An intensive massed practice approach to retraining balance post-stroke.  Gait&Posture. 2005;  22 154-163

Dr. Caroline Renner

Neurologisches Rehabilitationszentrum, Universität Leipzig

Muldentalweg 1

04828 Bennewitz

Email: renner@sachsenklinik.de

    >