Exp Clin Endocrinol Diabetes 2009; 117(2): 83-87
DOI: 10.1055/s-2008-1078733
Article

© J. A. Barth Verlag in Georg Thieme Verlag KG Stuttgart · New York

Genetic Variability of Procolipase Associates with Altered Insulin Secretion in Non-diabetic Caucasians

P. Weyrich 1 , S. Albet 1 , R. Lammers 1 , F. Machicao 1 , A. Fritsche 1 , N. Stefan 1 , H.-U. Häring 1
  • 1Department of Internal Medicine, Division of Endocrinology, Diabetology, Vascular Disease, Nephrology and Clinical Chemistry, University of Tübingen, Germany
Further Information

Publication History

received 21.03.2008 first decision 25.04.2008

accepted 15.05.2008

Publication Date:
25 August 2008 (online)

Abstract

Aims: Procolipase (CLPS) is secreted from the exocrine pancreas into the gastrointestinal tract and becomes proteolytically cleaved into colipase and the pentapeptide enterostatin. While colipase is an indispensable cofactor for pancreatic lipase, enterostatin acts as a hormone that inhibits insulin secretion and confers satiety signals to the brain, thereby restricting further food intake in animal models. As both high fat diet and obesity contribute to insulin resistance, we investigated whether genetic variability of CLPS associates with metabolic traits in non-diabetic humans at diabetes risk.

Methods: Tagging single nucleotide polymorphisms (SNPs) in the human CLPS locus on chr6p21.1 were selected using HapMap data. 498 humans, phenotyped for different glucose and lipid metabolic traits, were genotyped by bidirectional sequencing and multivariate linear regression analyses were undertaken.

Results: 2 tagging SNPs (rs3748050 in the Kozak sequence: A/G and rs3748051 in intron 1: A/G), covering 100% of CLPS variability including 8 kb of its promoter, were genotyped for association analyses. The minor alleles of both tagging SNPs associated significantly with a reduced insulin secretion (−20.2%, both SNPs) in various estimation models derived from the oral glucose tolerance test (OGTT; rs3748050/51: 30 min C-peptide levels: p=0.001/0.01, insulinogenic index: p=0.02/0.02, AUC C-peptide/AUC glucose: p=0.01/0.01) after adjustment for relevant covariates. No significant associations with fasting total cholesterol (c), HDL-c, LDL-c, triglycerides and free fatty acids were found (all p > 0.11).

Conclusions: CLPS genetic variability associates with insulin secretory function in non-diabetic humans and may represent a novel candidate gene for development of type 2 diabetes.

References

  • 1 Gerich JE. The genetic basis of type 2 diabetes mellitus: impaired insulin secretion versus impaired insulin sensitivity.  Endocr Rev. 1998;  19 491-503
  • 2 Parikh H, Groop L. Candidate genes for type 2 diabetes.  Rev Endocr Metab Disord. 2004;  5 151-176
  • 3 Zimmet P, Alberti KG, Shaw J. Global and societal implications of the diabetes epidemic.  Nature. 2001;  414 782-787
  • 4 Lowe ME, Rosenblum JL, MacEwen P, Strauss AW. Cloning and characterization of the human colipase cDNA.  Biochemistry. 1990;  29 823-828
  • 5 Okada S, York DA, Bray GA. Procolipase mRNA: tissue localization and effects of diet and adrenalectomy.  Biochem J. 1993;  292 (( Pt 3)) 787-789
  • 6 York DA, Lin L, Thomas SR, Braymer HD, Park M. Procolipase gene expression in the rat brain: source of endogenous enterostatin production in the brain.  Brain Res. 2006;  1087 52-59
  • 7 Lowe ME. The triglyceride lipases of the pancreas.  J Lipid Res. 2002;  43 2007-2016
  • 8 Bloomgarden ZT. Gut hormones and related concepts.  Diabetes Care. 2006;  29 2319-2324
  • 9 Erlanson-Albertsson C, York D. Enterostatin – a peptide regulating fat intake.  Obes Res. 1997;  5 360-372
  • 10 Berger K, Winzell MS, Mei J, Erlanson-Albertsson C. Enterostatin and its target mechanisms during regulation of fat intake.  Physiol Behav. 2004;  83 623-630
  • 11 Erlanson-Albertsson C, Hering B, Bretzel RG, Federlin K. Enterostatin inhibits insulin secretion from isolated perifused rat islets.  Acta Diabetol. 1994;  31 160-163
  • 12 Lindner I, Helwig U, Rubin D, Li Y, Fisher E, Boeing H, Mohlig M, Spranger J, Pfeiffer A, Hampe J, Schreiber S, Doring F, Schrezenmeir J. Putative association between a new polymorphism in exon 3 (Arg109Cys) of the pancreatic colipase gene and type 2 diabetes mellitus in two independent Caucasian study populations.  Mol Nutr Food Res. 2005;  49 972-976
  • 13 D’Silva S, Xiao X, Lowe ME. A polymorphism in the gene encoding procolipase produces a colipase, Arg92Cys, with decreased function against long-chain triglycerides.  J Lipid Res. 2007;  48 2478-2484
  • 14 Alberti KG, Zimmet PZ. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1 diagnosis and classification of diabetes mellitus provisional report of a WHO consultation.  Diabet Med. 1998;  15 539-553
  • 15 Matsuda M, DeFronzo RA. Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp.  Diabetes Care. 1999;  22 1462-1470
  • 16 Phillips DI, Clark PM, Hales CN, Osmond C. Understanding oral glucose tolerance: comparison of glucose or insulin measurements during the oral glucose tolerance test with specific measurements of insulin resistance and insulin secretion.  Diabet Med. 1994;  11 286-292
  • 17 Utzschneider KM, Prigeon RL, Tong J, Gerchman F, Carr DB, Zraika S, Udayasankar J, Montgomery B, Mari A, Kahn SE. Within-subject variability of measures of beta cell function derived from a 2 h OGTT: implications for research studies.  Diabetologia. 2007;  50 2516-2525
  • 18 Weyrich P, Machicao F, Staiger H, Simon P, Thamer C, Machann J, Schick F, Guirguis A, Fritsche A, Stefan N, Haring HU. Role of AMP-activated protein kinase gamma 3 genetic variability in glucose and lipid metabolism in non-diabetic whites.  Diabetologia. 2007;  50 2097-2106
  • 19 Carter KW, MacCaskie PA, Palmer LJ. JLIN: a java based linkage disequilibrium plotter.  BMC Bioinformatics. 2006;  7 60
  • 20 D’Agostino D, Cordle RA, Kullman J, Erlanson-Albertsson C, Muglia LJ, Lowe ME. Decreased postnatal survival and altered body weight regulation in procolipase-deficient mice.  J Biol Chem. 2002;  277 7170-7177
  • 21 Valisheva I, Munishkin A. Confirmation of differentially expressed genes in diabetic muscle found using AtlasTM plastic microarrays.  In, CLONTECHniques. 2001;  3-4
  • 22 Zhang J, Kaasik K, Blackburn MR, Lee CC. Constant darkness is a circadian metabolic signal in mammals.  Nature. 2006;  439 340-343
  • 23 Okada S, Lin L, York DA, Bray GA. Chronic effects of intracerebral ventricular enterostatin in Osborne-Mendel rats fed a high-fat diet.  Physiol Behav. 1993;  54 325-329
  • 24 Mei J, Bouras M, Erlanson-Albertsson C. Inhibition of insulin release by intraduodenally infused enterostatin-VPDPR in rats.  Peptides. 1997;  18 651-655
  • 25 Mei J, Erlanson-Albertsson C. Plasma insulin in response to enterostatin and effect of adrenalectomy in rats.  Obes Res. 1996;  4 513-519
  • 26 Lin L, Park M, Hulver M, York DA. Different metabolic responses to central and peripheral injection of enterostatin.  Am J Physiol Regul Integr Comp Physiol. 2006;  290 R909-915
  • 27 Machann J, Thamer C, Schnoedt B, Haap M, Haring HU, Claussen CD, Stumvoll M, Fritsche A, Schick F. Standardized assessment of whole body adipose tissue topography by MRI.  J Magn Reson Imaging. 2005;  21 455-462
  • 28 Stefan N, Machann J, Schick F, Claussen CD, Thamer C, Fritsche A, Haring HU. New imaging techniques of fat, muscle and liver within the context of determining insulin sensitivity.  Horm Res. 2005;  64 ((Suppl 3)) 38-44

Correspondence

P. WeyrichMD 

Department of Internal Medicine

Division of Endocrinology

Diabetology

Vascular Disease

Nephrology and Clinical Chemistry

University of Tübingen

Germany

University of Tübingen

Otfried-Müller-Str. 10

72076 Tübingen

Germany

Phone: +49/7071/298 27 08

Fax: +49/7071/29 31 88

Email: peter.weyrich@med.uni-tuebingen.de

    >