Pharmacopsychiatry 2008; 41: S78-S84
DOI: 10.1055/s-2008-1080911
Original Paper

© Georg Thieme Verlag KG Stuttgart · New York

Steps of Modeling Complex Biological Systems

E. O. Voit 1 , 2 , Z. Qi 1 , 2 , 3 , G. W. Miller 3
  • 1Department of Biomedical Engineering, Georgia Institute of Technology and Emory University Medical School, Atlanta, GA, USA
  • 2Integrative BioSystems Institute, Georgia Institute of Technology, Atlanta, GA, USA
  • 3Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
Further Information

Publication History

Publication Date:
28 August 2008 (online)

Abstract

A disease like schizophrenia results from the malfunctioning of a complex, multi-faceted biological system. As a consequence, the root causes of such a disease and the trajectories from health toward the disease are very difficult to comprehend with simple cause-and-effect reasoning. Similarly, reductionistic investigations are crucial for the discovery of specific disease mechanisms, but they are not sufficient for comprehensive assessments and explanations. A promising option for advancing the field is the utilization of mathematical models that can quantitatively account for hundreds of components and their interactions and thus have the potential of truly explaining complex diseases. While the potential of mathematical models is quite evident in principle, their practical implementation is a daunting task. On the one hand, many distinctly different approaches are possible. For instance, in the case of schizophrenia, models could focus on neurological aspects, physiological features, or the biochemical malfunctioning within some cell complexes in the brain, and each model would ultimately be very different. On the other hand, it seems that there are no rules or recommendations that guide the development of a new mathematical model from scratch. We discuss here that, even though mathematical models in biology and medicine may ultimately have a very different appearance, their development can be structured as a sequence of generic steps. Major drivers for many of the details of model development are the goals and objectives of the modeling task and the availability and quality of data that can be used for model design and validation.

References

  • 1 Deco G, Rolls ET. Attention and working memory: a dynamical model of neuronal activity in the prefrontal cortex.  Eur J Neurosci. 2003;  18 ((8)) 2374-2390
  • 2 Edelstein-Keshet L. Mathematical models in biology. Random House, New York 1984
  • 3 Fernandez E, Schiappa R, Girault JA, Novere N Le. DARPP-32 is a robust integrator of dopamine and glutamate signals.  PLoS Comput Biol. 2006;  2 ((12)) e176
  • 4 Gebicke-Haerter P. Systems biology and molecular psychiatry.  Pharmacopsychiatry. 2008;  , 41 (Suppl.1): S19–S27
  • 5 Giegling I, Hartmann AM, Genius J, Benninghoff J, Möller HJ, Rujescu D. Systems biology and complex neurobehavioral traits.  Pharmacopsychiatry. 2008;  , 41 (Suppl.1): S32–S36
  • 6 Haefner JW. Modeling biological systems. Chapman and Hall, New York 1996
  • 7 Kaplan D, Glass L. Understanding nonlinear dynamics. Springer, New York 1995
  • 8 Klipp E, Herwig R, Kowald A, Wierling C, Lehrach H. Systems biology in practice. Wiley-VCH Verlag, Weinheim 2005
  • 9 Novere N Le. Neurologic disease: are systems approaches the way forward?.  Pharmacopsychiatry. 2008;  , 41 (Suppl.1): S28–S31
  • 10 Lindskog M. Modelling of DARPP-32 regulation to understand intracellular signalling in psychiatric disease.  Pharmacopsychiatry. 2008;  , 41 (Suppl.1): S99–S104
  • 11 Loh M, Rolls ET, Deco G. Statistical fluctuations in attractor networks related to schizophrenia.  Pharmacopsychiatry. 2007;  40 ((Suppl.1)) S78-S84
  • 12 Meisenzahl EM, Scheuerecker J, Schmitt GJS, Möller HJ. Dopamine, prefrontal cortex and working memory functioning in schizphrenia.  Pharmacopsychiatry. 2007;  40 ((Suppl.1)) S62-S72
  • 13 Palsson BØ. Systems biology – properties of reconstructed networks. Cambridge Univ. Press, Cambridge, UK 2006
  • 14 Qi Z, Miller G, Voit EO. An in silico model of presynaptic dopamine homeostasis: implications for schizophrenia.  Pharmacopsychiatry. 2008;  , 41 (Suppl.1): S89–S98
  • 15 Savageau MA. Biochemical systems analysis. I. Some mathematical properties of the rate law for the component enzymatic reactions.  J Theor Biol. 1969;  25 ((3)) 365-369
  • 16 Savageau MA. Biochemical systems analysis : a study of function and design in molecular biology. Addison-Wesley Pub. Co. Advanced Book Program, Reading, Mass 1976
  • 17 Schlösser RGM, Koch K, Wagner G. Assessing the state space of the brain with fMRI: An integrative view of current methods.  Pharmacopsychiatry. 2007;  40 ((Suppl.1)) S85-S92
  • 18 Schulz AR. Enzyme kinetics from diastase to multi-enzyme systems. Cambridge University Press, Cambridge, UK 1994
  • 19 Svenningsson P, Fienberg AA, Allen PB, Moine CL, Lindskog M, Fisone G, Greengard P, Fredholm BB. Dopamine D(1) receptor-induced gene transcription is modulated by DARPP-32.  J Neurochem. 2000;  75 ((1)) 248-257
  • 20 Torres NV, Voit EO. Pathway analysis and optimization in metabolic engineering. Cambridge University Press, Cambridge, UK 2002
  • 21 Tretter F, Albus M. “Computational neuropsychiatry” of working memory disorders in schizophrenia: The network connectivity in prefrontal cortex – data and models.  Pharmacopsychiatry. 2007;  40 ((Suppl.1)) S2-S16
  • 22 Vogels TP, Abbott LF. Gating deficits in model networks: A path to schizophrenia?.  Pharmacopsychiatry. 2007;  40 ((Suppl.1)) S73-S77
  • 23 Voit EO. (Ed.) Canonical nonlinear modeling. S-system approach to understanding complexity. Van Nostrand Reinhold, NY 1991
  • 24 Voit EO. Computational analysis of biochemical systems. A practical guide for biochemists and molecular biologists. Cambridge University Press, Cambridge, UK 2000

Correspondence

E. O. VoitPhD 

Department of Biomedical Engineering

Georgia Institute of Technology and Emory

University Medical School

313 Ferst Drive, Suite 4103

Atlanta

30332-0535 GA

USA

Email: eberhard.voit@bme.gatech.edu

    >