Pharmacopsychiatry 2008; 41: S89-S98
DOI: 10.1055/s-2008-1080936
Original Paper

© Georg Thieme Verlag KG Stuttgart · New York

A Mathematical Model of Presynaptic Dopamine Homeostasis: Implications for Schizophrenia

Z. Qi 1 , 2 , 3 , 4 , G. W. Miller 2 , 3 , E. O. Voit 1 , 4
  • 1Department of Biomedical Engineering, Georgia Institute of Technology and Emory University Medical School, Atlanta, GA, USA
  • 2Department of Environmental and Occupational Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
  • 3Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
  • 4Integrative BioSystems Institute, Georgia Institute of Technology, Atlanta, GA, USA
Further Information

Publication History

Publication Date:
28 August 2008 (online)

Abstract

Several lines of evidence implicate altered dopamine neurotransmission in schizophrenia. Current drugs for schizophrenia focus on postsynaptic sites of the dopamine signaling pathways, but do not target presynaptic dopamine metabolism. We have begun to develop a mathematical model of dopamine homeostasis, which will aid our understanding of how genetic, environmental, and pharmacological factors alter the functioning of the presynaptic dopamine neuron. Formulated within the modeling framework of Biochemical Systems Theory, the mathematical model integrates relevant metabolites, enzymes, transporters, and regulators involved in the control of the biochemical environment within the dopamine neuron. In this report we use the model to assess several components and factors that affect the dopamine neuron and have been implicated in schizophrenia. These include the enzymes COMT, MAO, and TH, different dopamine transporters, as well as administration of amphetamine or cocaine. We also investigate scenarios that could increase (or decrease) dopamine neurotransmission and thus exacerbate (or alleviate) symptoms of schizophrenia. Our results indicate that the model predicts the effects of various factors related to schizophrenia on the homeostasis of the presynaptic dopamine neuron rather well. Upon further refinements and testing, the model has the potential of serving as a tool for screening novel therapeutics aimed at altering presynaptic dopamine function and thereby potentially ameliorating some of the symptomology of schizophrenia.

References

  • 1 Abi-Dargham A, Rodenhiser J, Printz D, Zea-Ponce Y, Gil R, Kegeles LS, Weiss R, Cooper TB, Mann JJ, Heertum RL Van, Gorman JM, Laruelle M. Increased baseline occupancy of D2 receptors by dopamine in schizophrenia.  Proc Natl Acad Sci USA. 2000;  97 ((14)) 8104-8109
  • 2 Alvarez-Vasquez F, Sims KJ, Cowart LA, Okamoto Y, Voit EO, Hannun YA. Simulation and validation of modelled sphingolipid metabolism in Saccharomyces cerevisiae.  Nature. 2005;  433 ((7024)) 425-430
  • 3 Bagnall A, Lewis RA, Leitner ML. Ziprasidone for schizophrenia and severe mental illness.  Cochrane Database Syst Rev. 2000;  , 4) CD001945
  • 4 Bender W, Albus M, Moller HJ, Tretter F. Towards systemic theories in biological psychiatry.  Pharmacopsychiatry. 2006;  39 ((Suppl.1)) S4-S9
  • 5 Borison RL, Pathiraja AP, Diamond BI, Meibach RC. Risperidone: clinical safety and efficacy in schizophrenia.  Psychopharmacol Bull. 1992;  28 ((2)) 213-218
  • 6 Burki HR, Ruch W, Asper H, Baggiolini M, Stille G. Pharmacological and neurochemical effects of clozapine (Leponex): new aspects in the drug therapy of schizophrenia.  Schweiz Med Wochenschr. 1973;  103 ((48)) 1716-1724
  • 7 Carlsson A. Antipsychotic drugs, neurotransmitters, and schizophrenia.  Am J Psychiatry. 1978;  135 ((2)) 165-173
  • 8 Carlsson A. The current status of the dopamine hypothesis of schizophrenia.  Neuropsychopharmacology. 1988;  1 ((3)) 179-186
  • 9 Carlsson A. The neurochemical circuitry of schizophrenia.  Pharmacopsychiatry. 2006;  39 ((Suppl.1)) S10-S14
  • 10 Caudle WM, Richardson JR, Wang MZ, Taylor TN, Guillot TS, MacCormack AL, Colebrooke RE, Monte DA Di, Emson PC, Miller GW. Reduced vesicular storage of dopamine causes progressive nigrostriatal neurodegeneration.  J Neurosci. 2007;  27 ((30)) 8138-8148
  • 11 Chen K, Holschneider DP, Wu W, Rebrin I, Shih JC. A spontaneous point mutation produces monoamine oxidase A/B knock-out mice with greatly elevated monoamines and anxiety-like behavior.  J Biol Chem. 2004;  279 ((38)) 39645-39652
  • 12 Cooper JR, Bloom FE, Roth RH. The Biochemical Basis of Neuropharmacology. (Oxford University Press, New York, NY) 2002
  • 13 Costa E, Groppetti A, Naimzada MK. Effects of amphetamine on the turnover rate of brain catecholamines and motor activity.  Br J Pharmacol. 1972;  44 ((4)) 742-751
  • 14 Curran C, Byrappa N, MacBride A. Stimulant psychosis: systematic review.  Br J Psychiatry. 2004;  185 196-204
  • 15 Deniker P. The neuroleptics: a historical survey.  Acta Psychiatr Scand Suppl. 1990;  358 83-87
  • 16 Ellinwood Jr EH, Sudilovsky A, Nelson LM. Evolving behavior in the clinical and experimental amphetamine (model) psychosis.  Am J Psychiatry. 1973;  130 ((10)) 1088-1093
  • 17 Emrich HM, Leweke FM, Schneider U. Systems-theory of psychosis – the relevance of “internal censorship”.  Pharmacopsychiatry. 2006;  39 ((Suppl.1)) S52-S53
  • 18 Faltus F, Hynek K, Dolezalova V, Kumnickova Z, Zemek P. Experience in the treatment of schizophrenia with clozapine.  Act Nerv Super (Praha). 1973;  15 ((2)) 95
  • 19 Ferreira AE. PLAS: In: http://www.dqb.fc.ul.pt/docentes/aferreira/plas.html . 1996–2007
  • 20 Fleischhacker WW. New drugs for the treatment of schizophrenic patients.  Acta Psychiatr Scand Suppl. 1995;  388 24-30
  • 21 Fon EA, Pothos EN, Sun BC, Killeen N, Sulzer D, Edwards RH. Vesicular transport regulates monoamine storage and release but is not essential for amphetamine action.  Neuron. 1997;  19 ((6)) 1271-1283
  • 22 Fukumura M, Cappon GD, Pu C, Broening HW, Vorhees CV. A single dose model of methamphetamine-induced neurotoxicity in rats: effects on neostriatal monoamines and glial fibrillary acidic protein.  Brain Res. 1998;  806 ((1)) 1-7
  • 23 Goel G, Chou IC, Voit EO. Biological systems modeling and analysis: a biomolecular technique of the twenty-first century.  J Biomol Tech. 2006;  17 ((4)) 252-269
  • 24 Green MF, Kern RS, Braff DL, Mintz J. Neurocognitive deficits and functional outcome in schizophrenia: are we measuring the “right stuff”?.  Schizophr Bull. 2000;  26 ((1)) 119-136
  • 25 Guillot TS, Richardson JR, Wang MZ, Li YJ, Taylor TN, Ciliax BJ, Zachrisson O, Mercer A, Miller GW. PACAP38 increases vesicular monoamine transporter 2 (VMAT2) expression and attenuates methamphetamine toxicity.  Neuropeptides 2008. Epub June 2; 
  • 26 Hanson GR, Sandoval V, Riddle E, Fleckenstein AE. Psychostimulants and vesicle trafficking: a novel mechanism and therapeutic implications.  Ann N Y Acad Sci. 2004;  1025 146-150
  • 27 Huotari M, Gogos JA, Karayiorgou M, Koponen O, Forsberg M, Raasmaja A, Hyttinen J, Mannisto PT. Brain catecholamine metabolism in catechol-O-methyltransferase (COMT)-deficient mice.  Eur J Neurosci. 2002;  15 ((2)) 246-256
  • 28 Iversen L. Neurotransmitter transporters and their impact on the development of psychopharmacology.  Br J Pharmacol. 2006;  147 ((Suppl.1)) S82-S88
  • 29 Jones SR, Gainetdinov RR, Jaber M, Giros B, Wightman RM, Caron MG. Profound neuronal plasticity in response to inactivation of the dopamine transporter.  Proc Natl Acad Sci USA. 1998;  95 ((7)) 4029-4034
  • 30 Kim DS, Szczypka MS, Palmiter RD. Dopamine-deficient mice are hypersensitive to dopamine receptor agonists.  J Neurosci. 2000;  20 ((12)) 4405-4413
  • 31 Laruelle M. Imaging dopamine transmission in schizophrenia. A review and meta-analysis.  Q J Nucl Med. 1998;  42 ((3)) 211-221
  • 32 Leuner K, Müller WE. The complexity of the dopaminergic synapses and their modulation by antipsychotics.  Pharmacopsychiatry. 2006;  39 ((Suppl.1)) S15-S20
  • 33 Lewandowski KE. Relationship of catechol-o-methyltransferase to schizophrenia and its correlates: evidence for associations and complex interactions.  Harv Rev Psychiatry. 2007;  15 ((5)) 233-244
  • 34 Lieberman JA, Kane JM, Alvir J. Provocative tests with psychostimulant drugs in schizophrenia.  Psychopharmacology (Berl). 1987;  91 ((4)) 415-433
  • 35 Lieberman JA, Stroup TS, MacEvoy JP, Swartz MS, Rosenheck RA, Perkins DO, Keefe RS, Davis SM, Davis CE, Lebowitz BD, Severe J, Hsiao JK. Effectiveness of antipsychotic drugs in patients with chronic schizophrenia.  N Engl J Med. 2005;  353 ((12)) 1209-1223
  • 36 MacCann UD, Wong DF, Yokoi F, Villemagne V, Dannals RF, Ricaurte GA. Reduced striatal dopamine transporter density in abstinent methamphetamine and methcathinone users: evidence from positron emission tomography studies with [11C]WIN-35 428.  J Neurosci. 1998;  18 ((20)) 8417-8422
  • 37 Miyamoto S, Duncan GE, Mailman RB, Lieberman JA. Developing novel antipsychotic drugs: strategies and goals.  Curr Opin CPNS Invest Drugs. 2000;  2 25-39
  • 38 Molero P, Ortuno F, Zalacain M, Patino-Garcia A. Clinical involvement of catechol-O-methyltransferase polymorphisms in schizophrenia spectrum disorders: influence on the severity of psychotic symptoms and on the response to neuroleptic treatment.  Pharmacogenomics J. 2007;  7 ((6)) 418-426
  • 39 Murphy DL, Belmaker R, Wyatt RJ. Monoamine oxidase in schizophrenia and other behavioral disorders. (Pergamon, Oxford) 1975
  • 40 Patil ST, Zhang L, Martenyi F, Lowe SL, Jackson KA, Andreev BV, Avedisova AS, Bardenstein LM, Gurovich IY, Morozova MA, Mosolov SN, Neznanov NG, Reznik AM, Smulevich AB, Tochilov VA, Johnson BG, Monn JA, Schoepp DD. Activation of mGlu2/3 receptors as a new approach to treat schizophrenia: a randomized Phase 2 clinical trial.  Nat Med. 2007;  13 ((9)) 1102-1107
  • 41 Pickar D. Prospects for pharmacotherapy of schizophrenia.  Lancet. 1995;  345 ((8949)) 557-562
  • 42 Pu C, Vorhees CV. Developmental dissociation of methamphetamine-induced depletion of dopaminergic terminals and astrocyte reaction in rat striatum.  Brain Res Dev Brain Res. 1993;  72 ((2)) 325-328
  • 43 Qi Z, Miller GW, Voit EO. Computational Systems Analysis of Dopamine Metabolism. , PLoS One (in press), 2008
  • 44 Ricaurte GA, Guillery RW, Seiden LS, Schuster CR, Moore RY. Dopamine nerve terminal degeneration produced by high doses of methylamphetamine in the rat brain.  Brain Res. 1982;  235 ((1)) 93-103
  • 45 Richelson E. Pharmacology of neuroleptics in use in the United States.  J Clin Psychiatry. 1985;  46 ((8 Pt 2)) 8-14
  • 46 Richelson E. Receptor pharmacology of neuroleptics: relation to clinical effects.  J Clin Psychiatry. 1999;  60 ((Suppl.10)) 5-14
  • 47 Savageau MA. Biochemical systems analysis. I. Some mathematical properties of the rate law for the component enzymatic reactions.  J Theor Biol. 1969;  25 ((3)) 365-369
  • 48 Savageau MA. Biochemical systems analysis II. The steady-state solutions for an n-pool system using a power-law approximation.  J Theor Biol. 1969;  25 ((3)) 370-379
  • 49 Savageau MA. Biochemical systems analysis. 3. Dynamic solu-tions using a power-law approximation.  J Theor Biol. 1970;  26 ((2)) 215-226
  • 50 Savageau MA. Biochemical Systems Analysis: A Study of Function and Design in Molecular Biology. (Addison-Wesley, Reading, MA) 1976
  • 51 Schmitz Y, Lee CJ, Schmauss C, Gonon F, Sulzer D. Amphetamine distorts stimulation-dependent dopamine overflow: effects on D2 autoreceptors, transporters, and synaptic vesicle stores.  J Neurosci. 2001;  21 ((16)) 5916-5924
  • 52 Seeman P, Chau-Wong M, Tedesco J, Wong K. Brain receptors for antipsychotic drugs and dopamine: direct binding assays.  Proc Natl Acad Sci USA. 1975;  72 ((11)) 4376-4380
  • 53 Snyder SH, Banerjee SP, Yamamura HI, Greenberg D. Drugs, Neurotransmitters, and Schizophrenia.  Science. 1974;  184 ((4143)) 1243-1253
  • 54 Ste-Marie L, Vachon L, Bemeur C, Lambert J, Montgomery J. Local striatal infusion of MPP+does not result in increased hydroxylation after systemic administration of 4-hydroxybenzoate.  Free Radic Biol Med. 1999;  27 ((9–10)) 997-1007
  • 55 Stimmel GL. Benzodiazepines in schizophrenia.  Pharmacotherapy. 1996;  16 ((6 Pt 2)) 148S-151S , ; discussion 166S–168S
  • 56 Stroup TS, MacEvoy JP, Swartz MS, Byerly MJ, Glick ID, Canive JM, MacGee MF, Simpson GM, Stevens MC, Lieberman JA. The National Institute of Mental Health Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE) project: schizophrenia trial design and protocol development.  Schizophr Bull. 2003;  29 ((1)) 15-31
  • 57 Sulzer D, Chen TK, Lau YY, Kristensen H, Rayport S, Ewing A. Amphetamine redistributes dopamine from synaptic vesicles to the cytosol and promotes reverse transport.  J Neurosci. 1995;  15 ((5 Pt 2)) 4102-4108
  • 58 Sulzer D, Sonders MS, Poulsen NW, Galli A. Mechanisms of neurotransmitter release by amphetamines: a review.  Prog Neurobiol. 2005;  75 ((6)) 406-433
  • 59 Takahashi N, Miner LL, Sora I, Ujike H, Revay RS, Kostic V, Jackson-Lewis V, Przedborski S, Uhl GR. VMAT2 knockout mice: heterozygotes display reduced amphetamine-conditioned reward, enhanced amphetamine locomotion, and enhanced MPTP toxicity.  Proc Natl Acad Sci USA. 1997;  94 ((18)) 9938-9943
  • 60 Torres NV, Voit EO. Pathway Analysis and Optimization in Metabolic Engineering. (Cambridge University Press, Cambridge, U.K.) 2002
  • 61 Tretter F, Scherer J. Schizophrenia, neurobiology and the methodo-logy of systemic modeling.  Pharmacopsychiatry. 2006;  39 ((Suppl.1)) S26-S35
  • 62 Tunbridge EM, Bannerman DM, Sharp T, Harrison PJ. Catechol-o-methyltransferase inhibition improves set-shifting performance and elevates stimulated dopamine release in the rat prefrontal cortex.  J Neurosci. 2004;  24 ((23)) 5331-5335
  • 63 Tyce GM, Dousa MK, Muenter MD. MAO and L-dopa treatment of Parkinson's disease.  J Neural Transm Suppl. 1990;  29 233-239
  • 64 Voit EO. (ed.) Canonical Nonlinear Modeling. S-System Approach to Understanding Complexity. (Van Nostrand Reinhold, New York, NY) 1991
  • 65 Voit EO. Canonical modeling: review of concepts with emphasis on environmental health.  Environ Health Perspect. 2000;  108 ((Suppl.5)) 895-909
  • 66 Voit EO. Computational analysis of biochemical systems: a practical guide for biochemists and molecular biologists. (Cambridge University Press, Cambridge, U.K.) 2000
  • 67 Voit EO, Qi Z, Miller GW. Steps of Modeling Complex Biological Systems.  Pharmacopsychiatry. 2008;  , 41 (Suppl.1): S78–S84
  • 68 Waddington JL, Scully PJ, O’Callaghan E. The new antipsychotics, and their potential for early intervention in schizophrenia.  Schizophr Res. 1997;  28 ((2–3)) 207-222
  • 69 Willner P. The dopamine hypothesis of schizophrenia: current status, future prospects.  Int Clin Psychopharmacol. 1997;  12 ((6)) 297-308
  • 70 Wilson JM, Kalasinsky KS, Levey AI, Bergeron C, Reiber G, Anthony RM, Schmunk GA, Shannak K, Haycock JW, Kish SJ. Striatal dopamine nerve terminal markers in human, chronic methamphetamine users.  Nat Med. 1996;  2 ((6)) 699-703
  • 71 Zucker M, Valevski A, Weizman A, Rehavi M. Increased platelet vesicular monoamine transporter density in adult schizophrenia patients.  Eur Neuropsychopharmacol. 2002;  12 ((4)) 343-347

Correspondence

E. O. VoitPhD 

Department of Biomedical Engineering

Georgia Institute of Technology and Emory

University Medical School

313 Ferst Drive

Suite 4103

Atlanta

GA 30332-0535

USA

Email: eberhard.voit@bme.gatech.edu

    >