Thromb Haemost 2006; 95(01): 12-21
DOI: 10.1160/TH05-07-0483
Theme Issue Article
Schattauer GmbH

Chemotaxis: moving forward and holding on to the past

Anna Bagorda
1   Laboratory of Cellular and Molecular Biology, Centre for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
,
Vassil A. Mihaylov
1   Laboratory of Cellular and Molecular Biology, Centre for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
2   Laboratory of Molecular Biology and Genetics, Medical University of Sofia, Sofia, Bulgaria
,
Carole A. Parent
1   Laboratory of Cellular and Molecular Biology, Centre for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
› Author Affiliations
Financial support: A. B. is a recipient of a fellowship from F. I. R. C. (Italian Federation Cancer Research).
Further Information

Publication History

Received 11 July 2005

Accepted after revision 14 October 2005

Publication Date:
28 November 2017 (online)

Summary

The ability of cells to sense external chemical cues and respond by directionally migrating towards them is a fundamental process called chemotaxis. This phenomenon is essential for many biological responses in the human body, including the invasion of neutrophils to sites of inflammation. Remarkably, many of the molecular mechanisms involved in controlling neutrophils chemotaxis arose millions of years ago in the simple eukaryotic organism Dictyostelium discoideum. Both neutrophils and Dictyostelium use G protein-coupled signaling cascades to mediate chemotactic responses, which are responsible for transducing external cues into highly organized cytoskeletal rearrangements that ultimately lead to directed migration. By using the genetically and biochemically tractable organism Dictyostelium as a model system, it has been possible to decipher many of the signal transduction events that are involved in chemotaxis.

 
  • References

  • 1 Parent CA. Making all the right moves: chemotaxis in neutrophils and Dictyostelium. Curr Opin Cell Biol 2004; 16: 4-13.
  • 2 Eichinger L, Pachebat JA, Glockner G. et al. The genome of the social amoeba Dictyostelium discoideum. Nature 2005; 435: 43-57.
  • 3 Kreppel L, Fey P, Gaudet P. et al. dictyBase: a new Dictyostelium discoideum genome database. Nucleic Acids Res 2004; 32 (Database issue): D332-3.
  • 4 Kessin RH. Dictyostelium: evolution, cell biology, and the development of multicellularity. Cambridge: Cambridge University Press; 2001
  • 5 Escalante R, Vicente JJ. Dictyostelium discoideum: a model system for differentiation and patterning. IntJ Dev Biol 2000; 44: 819-35.
  • 6 Chisholm RL, Firtel RA. Insights into morphogenesis from a simple developmental system. Nat Rev Mol Cell Biol 2004; 05: 531-41.
  • 7 Kimmel AR, Firtel RA. Breaking symmetries: regulation of Dictyostelium development through chemoattractant and morphogen signal-response. Curr Opin Genet Dev 2004; 14: 540-9.
  • 8 Iranfar N, Fuller D, Loomis WF. Genome-wide expression analyses of gene regulation during early development of Dictyostelium discoideum . Eukaryot Cell 2003; 02: 664-70.
  • 9 Saran S, Meima ME, Alvarez-Curto E. et al. cAMP signaling in Dictyostelium. Complexity of cAMP synthesis, degradation and detection. J Muscle Res Cell Motil 2002; 23: 793-802.
  • 10 Kriebel PW, Parent CA. Adenylyl cyclase expression and regulation during the differentiation of Dictyostelium discoideum. IUBMB Life 2004; 56: 541-6.
  • 11 Kimmel AR, Parent CA. The signal to move: D. discoideum go orienteering. Science 2003; 300: 1525-7.
  • 12 Kessin RH. Cell motility: Making streams. Nature 2003; 422: 481-2.
  • 13 Shaffer B. Primitive Motile Systems in Cell Biology. Academic; New York: 1964: 387-405.
  • 14 Kay RR. Chemotaxis and cell differentiation in Dictyostelium. Curr Opin Microbiol 2002; 05: 575-9.
  • 15 Thomason P, Traynor D, Kay R. Taking the plunge. Terminal differentiation in Dictyostelium . Trends Genet 1999; 15: 15-9.
  • 16 Meima M, Schaap P. Dictyostelium developmentsocializing through cAMP. Semin Cell Dev Biol 1999; 10: 567-76.
  • 17 Virdy KJ, Sands TW, Kopko SH. et al. High cAMP in spores of Dictyostelium discoideum: association with spore dormancy and inhibition of germination. Microbiology 1999; 145: 1883-90.
  • 18 Karnik SS, Gogonea C, Patil S. et al. Activation of G-protein-coupled receptors: a common molecular mechanism. Trends Endocrinol Metab 2003; 14: 431-7.
  • 19 Klein PS, Sun TJ, Saxe 3rd CL. et al. A chemoattractant receptor controls development in Dictyostelium discoideum. Science 1988; 241: 1467-72.
  • 20 Saxe 3rd CL, Johnson R, Devreotes PN. et al. Multiple genes for cell surface cAMP receptors in Dictyostelium discoideum. Dev Genet 1991; 12: 6-13.
  • 21 Saxe 3rd CL, Johnson RL, Devreotes PN. et al. Expression of a cAMP receptor gene of Dictyostelium and evidence for a multigene family. Genes Dev 1991; 05: 1-8.
  • 22 Johnson RL, Van Haastert PJ, Kimmel AR. et al. The cyclic nucleotide specificity of three cAMP receptors in Dictyostelium. J Biol Chem 1992; 267: 4600-7.
  • 23 Insall RH, Schaap P, Devreotes PN. Two cAMP receptors activate common signaling pathways in Dictyostelium . Mol Biol Cell 1994; 05: 703-11.
  • 24 Saxe 3rd CL, Ginsburg GT, Louis JM. et al. CAR2, a prestalk cAMP receptor required for normal tip formation and late development of Dictyostelium discoideum. Genes Dev 1993; 07: 262-72.
  • 25 Louis JM, Ginsburg GT, Kimmel AR. The cAMP receptor cAR4 regulates axial patterning and cellular differentiation during late development of Dictyostelium . Genes Dev 1994; 08: 2086-96.
  • 26 Wettschureck N, Offermanns S. Mammalian G proteins and their cell type specific functions. Physiol Rev 2005; 85: 1159-204.
  • 27 Brzostowski JA, Johnson C, Kimmel AR. Galphamediated inhibition of developmental signal response. Curr Biol 2002; 12: 1199-208.
  • 28 Kumagai A, Hadwiger A, Pupillo M. et al. Molecular genetic analysis of two Gα protein subunits in Dictyostelium . J Biol Chem 1991; 266: 1220-8.
  • 29 Janetopoulos C, Jin T, Devreotes PN. Receptor-mediated activation of heterotrimeric G-proteins in living cells. Science 2001; 291: 2408-11.
  • 30 Hadwiger JA, Lee S, Firtel RA. The G alpha subunitG alpha 4 couples to pterin receptors and identifies a signaling pathway that is essential for multicellular development in Dictyostelium . Proc Natl Acad Sci U S A 1994; 91: 10566-70.
  • 31 Brzostowski JA, Parent CA, Kimmel AR. A G alpha-dependent pathway that antagonizes multiple chemoattractant responses that regulate directional cell movement. Genes Dev 2004; 18: 805-15.
  • 32 Xu J, Wang F, Van Keymeulen A. et al. Divergent signals and cytoskeletal assemblies regulate self-organizing polarity in neutrophils. Cell 2003; 114: 201-14.
  • 33 Neptune ER, Bourne HR. Receptors induce chemotaxis by releasing the βγ subunit of Gi, not by activating Gq or Gs. Proc Natl Acad Sci USA 1997; 94: 14489-94.
  • 34 Kehrl JH. G-protein-coupled receptor signaling, RGS proteins, and lymphocyte function. Crit Rev Immunol 2004; 24: 409-23.
  • 35 Hirsch E, Katanaev VL, Garlanda C. et al. Central role for G protein-coupled phosphoinositide 3-kinase gamma in inflammation. Science 2000; 287: 1049-53.
  • 36 Sasaki T, Irie-Sasaki J, Jones RG. et al. Function of PI3Kgamma in thymocyte development, T cell activation, and neutrophil migration. Science 2000; 287: 1040-6.
  • 37 Li Z, Jiang H, Xie W. et al. Roles of PLC-beta2 and -beta3 and PI3Kgamma in chemoattractant-mediated signal transduction. Science 2000; 287: 1046-9.
  • 38 Ferretti ME, Nalli M, Biondi C. et al. Modulation of neutrophil phospholipase C activity and cyclic AMP levels by fMLP-OMe analogues. Cell Signal 2001; 13: 233-40.
  • 39 Partida-Sanchez S, Cockayne DA, Monard S. et al. Cyclic ADP-ribose production by CD38 regulates intracellular calcium release, extracellular calcium influx and chemotaxis in neutrophils and is required for bacterial clearance in vivo . Nat Med 2001; 07: 1209-16.
  • 40 Partida-Sanchez S, Iribarren P, Moreno-Garcia ME. et al. Chemotaxis and calcium responses of phagocytes to formyl peptide receptor ligands is differentially regulated by cyclic ADP ribose. J Immunol 2004; 172: 1896-906.
  • 41 Huang YE, Iijima M, Parent CA. et al. Receptor-mediated regulation of PI3Ks confines PI(3,4,5)P3 to the leading edge of chemotaxing cells. Mol Biol Cell 2003; 14: 1913-22.
  • 42 Funamoto S, Meili R, Lee S. et al. Spatial and temporal regulation of 3-phosphoinositides by PI 3-kinase and PTEN mediates chemotaxis. Cell 2002; 109: 611-23.
  • 43 Comer FI, Parent CA. PI 3-kinases and PTEN: how opposites chemoattract. Cell 2002; 109: 541-4.
  • 44 Drayer AL, Van der Kaay J, Mayr GW. et al. Role of phospholipase C in Dictyostelium: formation of inositol 1,4,5-trisphosphate and normal development in cells lacking phospholipase C activity. Embo J 1994; 13: 1601-9.
  • 45 van Haastert PJ, van Dijken P. Biochemistry and genetics of inositol phosphate metabolism in Dictyostelium. FEBS Lett 1997; 410: 39-43.
  • 46 Van Dijken P, Bergsma JC, Van Haastert PJ. Phospholipase-C-independent inositol 1,4,5-trisphosphate formation in Dictyostelium cells. Activation ofa plasma-membrane-bound phosphatase by receptor-stimulated Ca2+ influx. Eur J Biochem 1997; 244: 113-9.
  • 47 Traynor D, Milne JL, Insall RH. et al. Ca(2+) signalling is not required for chemotaxis in Dictyostelium. EmboJ 2000; 19: 4846-54.
  • 48 Schaloske RH, Lusche DF, Bezares-Roder K. et al. Ca2+ regulation in the absence of the iplA gene product in Dictyostelium discoideum. BMC Cell Biol 2005; 06: 13.
  • 49 Milne JL, Kim JY, Devreotes PN. Chemoattractant receptor signaling, G protein-dependent and -independent pathways. In: Corbin J, Francis S. editors. Signal Transduction in Health and Disease, Advances in second messenger and phosphoprotein research. Philadelphia: Lippincott-Raven; 1997: 83-103.
  • 50 Brzostowski JA, Kimmel AR. Signaling at zero G: G-protein-independent functions for 7-TM receptors. Trends Biochem Sci 2001; 26: 291-7.
  • 51 Milne JL, Wu L, Caterina MJ. et al. Seven helix cAMP receptors stimulate Ca2+ entry in the absence of functional G proteins in Dictyostelium. J Biol Chem 1995; 270: 5926-31.
  • 52 Chen MY, Devreotes PN, Gundersen RE. Serine 113 is the site of receptor-mediated phosphorylation of the DictyosteliumG protein alpha-subunitG alpha 2. J Biol Chem 1994; 269: 20925-30.
  • 53 Xiao Z, Yao Y, Long Y. et al. Desensitization of G-protein-coupled receptors. agonist-induced phosphorylation of the chemoattractant receptor cAR1 lowers its intrinsic affinity for cAMP. J Biol Chem 1999; 274: 1440-8.
  • 54 Maeda M, Aubry L, Insall R. et al. Seven helix chemoattractant receptors transiently stimulate mitogenactivated protein kinase in Dictyostelium. Role of heterotrimeric G proteins. J Biol Chem 1996; 271: 3351-4.
  • 55 Mato JM, Losada A, Nanjundiah V. et al. Signal input for a chemotactic response in the cellular slime mold Dictyostelium discoideum . Proc Natl Acad Sci USA 1975; 72: 4991-3.
  • 56 Tranquillo RT, Lauffenburger DA, Zigmond SH. A stochastic model for leukocyte random motility and chemotaxis based on receptor binding fluctuations. J Cell Biol 1988; 106: 303-9.
  • 57 Parent CA, Devreotes PN. A cell’s sense of direction. Science 1999; 284: 765-70.
  • 58 Pollard TD, Borisy GG. Cellular motility driven by assembly and disassembly of actin filaments. Cell 2003; 112: 453-65.
  • 59 Prasher DC, Eckenrode VK, Ward WW. et al. Primary structure of the Aequorea victoria green-fluorescent protein. Gene 1992; 111: 229-33.
  • 60 Tsien RY. The green fluorescent protein. Annu Rev Biochem 1998; 67: 509-44.
  • 61 Shaner NC, Campbell RE, Steinbach PA. et al. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol 2004; 22: 1567-72.
  • 62 Zhang J, Campbell RE, Ting AY. et al. Creating new fluorescent probes for cell biology. Nat Rev Mol Cell Biol 2002; 03: 906-18.
  • 63 Reits EA, Neefjes JJ. From fixed to FRAP: measuring protein mobility and activity in living cells. Nat Cell Biol 2001; 03: E145-7.
  • 64 Xiao Z, Zhang N, Murphy DB. et al. Dynamic distribution of chemoattractant receptors in living cells during chemotaxis and persistent stimulation. J Cell Biol 1997; 139: 365-374.
  • 65 Servant G, Weiner OD, Neptune ER. et al. Dynamics of a chemoattractant receptor in living neutrophils during chemotaxis. Mol Biol Cell 1999; 10: 1163-78.
  • 66 van Buul JD, Voermans C, van Gelderen J. et al. Leukocyte-endothelium interaction promotes SDF- 1-dependent polarization of CXCR4. J Biol Chem 2003; 278: 30302-10.
  • 67 Gomez-Mouton C, Lacalle RA, Mira E. et al. Dynamic redistribution of raft domains as an organizing platform for signaling during cell chemotaxis. J Cell Biol 2004; 164: 759-68.
  • 68 Jin T, Zhang N, Long Y. et al. Localization of the G protein βγ complex in living cells during chemotaxis. Science 2000; 287: 1034-6.
  • 69 Iijima M, Huang YE, Devreotes P. Temporal and spatial regulation of chemotaxis. Dev Cell 2002; 03: 469-78.
  • 70 Insall R, Kuspa A, Lilly PJ. et al. CRAC, a cytosolic protein containing a pleckstrin homology domain, is required for receptor and G protein-mediated activation of adenylyl cyclase in Dictyostelium . J Cell Biol 1994; 126: 1537-45.
  • 71 Parent CA, Blacklock BJ, Froehlich WM. et al. G protein signaling events are activated at the leading edge of chemotactic cells. Cell 1998; 95: 81-91.
  • 72 Comer FI, Lippincott CK, Masbad JJ. et al. The PI3K-mediated activation of CRAC independently regulates adenylyl cyclase activation and chemotaxis. Curr Biol 2005; 15: 134-9.
  • 73 Meili R, Ellsworth C, Lee S. et al. Chemoattractantmediated transient activation and membrane localization of Akt/PKB is required for efficient chemotaxis to cAMP in Dictyostelium . EMBO J 1999; 18: 2092-105.
  • 74 Servant G, Weiner OD, Herzmark P. et al. Polarization of chemoattractant receptor signaling during neutrophil chemotaxis. Science 2000; 287: 1037-40.
  • 75 Chung CY, Potikyan G, Firtel RA. Control of cell polarity and chemotaxis by Akt/PKB and PI3 kinase through the regulation of PAKa. Mol Cell 2001; 07: 937-47.
  • 76 Funamoto S, Milan K, Meili R. et al. Role of phosphatidylinositol 3’ kinase and a downstream pleckstrin homology domain-containing protein in controlling chemotaxis in dictyostelium. J Cell Biol 2001; 153: 795-810.
  • 77 Iijima M, Devreotes P. Tumor suppressor PTEN mediates sensing of chemoattractant gradients. Cell 2002; 109: 599-610.
  • 78 Li Z, Hannigan M, Mo Z. et al. Directional sensing requires G beta gamma-mediated PAK1 and PIX alphadependent activation of Cdc42. Cell 2003; 114: 215-27.
  • 79 Sasaki AT, Chun C, Takeda K. et al. Localized Ras signaling at the leading edge regulates PI3K, cell polarity, and directional cell movement. J Cell Biol 2004; 167: 505-18.
  • 80 Wang F, Herzmark P, Weiner OD. et al. Lipid products of PI(3)Ks maintain persistent cell polarity and directed motility in neutrophils. Nat Cell Biol 2002; 04: 513-8.
  • 81 Kae H, Lim CJ, Spiegelman GB. et al. Chemoattractant-induced Ras activation during Dictyostelium aggregation. EMBO Rep 2004; 05: 602-6.
  • 82 van Haastert PJ, devreotes PN. Chemotaxis: signaling the way forward. Nature Review Mol Cell Biol 2004; 05: 626-34.
  • 83 Srinivasan S, Wang F, Glavas S. et al. Rac and Cdc42 play distinct roles in regulating PI(3,4,5)P3 and polarity during neutrophil chemotaxis. J Cell Biol 2003; 160: 375-85.
  • 84 Park KC, Rivero F, Meili R. et al. Rac regulation of chemotaxis and morphogenesis in Dictyostelium . Embo J 2004; 23: 4177-89.
  • 85 Vartiainen MK, Machesky LM. The WASP-Arp2/3 pathway: genetic insights. Curr Opin Cell Biol 2004; 16: 174-81.
  • 86 Raftopoulou M, Hall A. Cell migration: Rho GTPases lead the way. Dev Biol 2004; 265: 23-32.
  • 87 Hill K, Krugmann S, Andrews SR. et al. Regulation of P-Rex1 by phosphatidylinositol (3,4,5)-trisphosphate and Gbetagamma subunits. J Biol Chem 2005; 280: 4166-73.
  • 88 Welch HC, Coadwell WJ, Ellson CD. et al. P-Rex1, a PtdIns(3,4,5)P3– and Gbetagamma-regulated guanine-nucleotide exchange factor for Rac. Cell 2002; 108: 809-21.
  • 89 Kim C, Marchal CC, Penninger J. et al. The hemopoietic Rho/Rac guanine nucleotide exchange factor Vav1 regulates N-formyl-methionyl-leucyl-phenylalanine-activated neutrophil functions. J Immunol 2003; 171: 4425-30.
  • 90 Yoshii S, Tanaka M, Otsuki Y. et al. alphaPIX nucleotide exchange factor is activated by interaction with phosphatidylinositol 3-kinase. Oncogene 1999; 18: 5680-90.
  • 91 Chen L, Janetopoulos C, Huang YE. et al. Two phases of actin polymerization display different dependencies on PI(3,4,5)P3 accumulation and have unique roles during chemotaxis. Mol Biol Cell 2003; 14: 5028-37.
  • 92 Myers SA, Han JW, Lee Y. et al. A Dictyostelium homologue of WASP is required for polarized F-actin assembly during chemotaxis. Mol Biol Cell 2005; 16: 2191-206.
  • 93 Oikawa T, Yamaguchi H, Itoh T. et al. PtdIns(3,4,5)P3 binding is necessary for WAVE2-induced formation of lamellipodia. Nat Cell Biol 2004; 06: 420-6.
  • 94 Worthylake RA, Lemoine S, Watson JM. et al. RhoA is required for monocyte tail retraction during transendothelial migration. J Cell Biol 2001; 154: 147-60.
  • 95 Niggli V. Rho-kinase in human neutrophils: a role in signalling for myosin light chain phosphorylation and cell migration. FEBS Lett 1999; 445: 69-72.
  • 96 Johnson EN, Seasholtz TM, Waheed AA. et al. RGS16 inhibits signalling through theG alpha 13-Rho axis. Nat Cell Biol 2003; 05: 1095-103.
  • 97 Xu J, Wang F, Van Keymeulen A. et al. Neutrophil microtubules suppress polarity and enhance directional migration. Proc Natl Acad Sci USA 2005; 102: 6884-9.
  • 98 Niggli V. Microtubule-disruption-induced and chemotactic-peptide-induced migration of human neutrophils: implications for differential sets of signalling pathways. J Cell Sci 2003; 116: 813-22.
  • 99 Li Z, Dong X, Wang Z. et al. Regulation of PTEN by Rho small GTPases. Nat Cell Biol 2005; 07: 399-404.
  • 100 Bosgraaf L, Russcher H, Smith JL. et al. A novel cGMP signalling pathway mediating myosin phosphorylation and chemotaxis in Dictyostelium . Embo J 2002; 21: 4560-70.
  • 101 Bosgraaf L, Van Haastert PJ. A model for cGMP signal transduction in Dictyostelium in perspective of 25 years of cGMP research. J Muscle Res Cell Motil 2002; 23: 781-91.
  • 102 Veltman DM, Roelofs J, Engel R. et al. Activation of soluble guanylyl cyclase at the leading edge during Dictyostelium chemotaxis. Mol Biol Cell 2005; 16: 976-83.
  • 103 Kriebel PW, Barr VA, Parent CA. Adenylyl cyclase localization regulates streaming during chemotaxis. Cell 2003; 112: 549-60.
  • 104 Bazzoni F, Cassatella MA, Rossi F. et al. Phagocytosing neutrophils produce and release high amounts of the neutrophil-activating peptide 1/interleukin 8. J Exp Med 1991; 173: 771-4.
  • 105 Baggiolini M, Moser B, Clark-Lewis I. Interleukin-8 and related chemotactic cytokines. The Giles Filley Lecture. Chest 1994; 105 (03) Suppl 95S-98S.
  • 106 Kannan S. Amplification of extracellular nucleotide-induced leukocyte(s) degranulation by contingent autocrine and paracrine mode of leukotriene-mediated chemokine receptor activation. Med Hypotheses 2002; 59: 261-5.
  • 107 Cassatella MA. Neutrophil-derived proteins: selling cytokines by the pound. Adv Immunol 1999; 73: 369-509.
  • 108 Matsukawa A, Yoshinaga M. Sequential generation of cytokines during the initiative phase of inflammation, with reference to neutrophils. Inflamm Res 1998; 47 (Suppl. 03) S137-44.
  • 109 Brechard S, Bueb JL, Tschirhart EJ. Interleukin-8 primes oxidative burst in neutrophil-like HL-60 through changes in cytosolic calcium. Cell Calcium 2005; 37: 531-40.
  • 110 Kuhns DB, Gallin JI. Increased cell-associated IL-8 in human exudative and A23187-treated peripheral blood neutrophils. J Immunol 1995; 154: 6556-62.
  • 111 Marie C, Fitting C, Cheval C. et al. Presence of high levels of leukocyte-associated interleukin-8 upon cell activation and in patients with sepsis syndrome. Infect Immun 1997; 65: 865-71.
  • 112 Soberman RJ, Christmas P. The organization and consequences of eicosanoid signaling. J Clin Invest 2003; 111: 1107-13.
  • 113 Ford-Hutchinson AW, Bray MA, Doig MV. et al. Leukotriene B, a potent chemokinetic and aggregating substance released from polymorphonuclear leukocytes. Nature 1980; 286: 264-5.
  • 114 Palmblad J, Malmsten CL. Uden et al. Leukotriene B4 is a potent and stereospecific stimulator of neutrophil chemotaxis and adherence. Blood 1981; 58: 658-61.