Nuklearmedizin 2010; 49(06): 209-215
DOI: 10.3413/nukmed-0315-10-05
Original article
Schattauer GmbH

Myocardial perfusion alterations observed months after radiotherapy are related to the cellular damage

Chronische Perfusionsveränderungen im Myokard nach Strahlentherapie stehen im Zusammenhang mit der zellulären Schädigung
I. Dogan
1   Department of Nuclear Medicine, Karadeniz Technical University, Faculty of Medicine, Trabzon, Turkey
,
O. Sezen
2   Department of Radiation Oncology, Karadeniz Technical University, Faculty of Medicine, Trabzon, Turkey
,
B. Sonmez
1   Department of Nuclear Medicine, Karadeniz Technical University, Faculty of Medicine, Trabzon, Turkey
,
A. Y. Zengin
2   Department of Radiation Oncology, Karadeniz Technical University, Faculty of Medicine, Trabzon, Turkey
,
E. Yenilmez
3   Department of Histology and Embryology, Karadeniz Technical University, Faculty of Medicine, Trabzon, Turkey
,
E. Yulug
3   Department of Histology and Embryology, Karadeniz Technical University, Faculty of Medicine, Trabzon, Turkey
,
I. Abidin
4   Department of Biophysics, Karadeniz Technical University, Faculty of Medicine, Trabzon, Turkey
,
Z. Bahat
2   Department of Radiation Oncology, Karadeniz Technical University, Faculty of Medicine, Trabzon, Turkey
› Author Affiliations
Further Information

Publication History

received: 16 June 2010

accepted in revised form: 20 September 2010

Publication Date:
24 January 2018 (online)

Summary

Aim: Myocardial perfusion scintigraphy (MPS) is one of the widely used tools to follow developing radiation-induced heart disease (RIHD). But the clinical significance of MPS defects has not been fully understood. We have investigated the biodistribution alterations related to perfusion defects following radiotherapy (RT) and showed coexisting morphologic changes. Animals, methods: A total of 18 Wistar rats were divided into three groups (1 control and 2 irradiated groups). A single cardiac 20 Gy radiation dose was used to induce long term cardiac defects. Biodistribution studies with technetium (99mTc) sestamibi and histological evaluations were performed 4 and 6 months after irradiation. The percent radioactivity (%ID/g) was calculated for each heart. For determination of the myocardial damage, positive apoptotic cardiomyocytes, myocardial cell degeneration, myocardial fibrosis, vascular damage and ultrastructural structures were evaluated. Results: Six months after treatment, a significant drop of myocardial uptake was observed (p < 0.05). Irradiation- induced apoptosis rose within the first 4 months after radiation treatment and were stayed elevated until the end of the observation period (p < 0.05). Also, the irradiation has induced myocardial degeneration, perivascular and interstitial fibrosis in the heart at the end of six and four months (p < 0.01). The severity and extent of myocardial injury has became more evident at the end of six month (p < 0.05). At ultrastructural level, prominent changes have been observed in the capillary endothelial and myocardial cells. Conclusion: Our findings suggest that the reduced rest myocardial perfusion, occuring months after the radiation, indicates a serious myocard tissue damage which is characterized by myocardial degeneration and fibrosis.

Zusammenfassung

Ziel: Myokard-Perfusionsszintigraphie (MPS) eine häufig benutzte Methode, um die Entwicklung von Strahlungs-verursachten Herzkrankheiten (RIHD) zu verfolgen. Allerdings sind die klinische Signifikanz der MPS-Schädigungen und die zugrunde legenden pathologischen Mechanismen bisher nicht vollständig untersucht. In dieser Studie wurden deswegen die biodiversen Veränderungen, die durch Perfusionsschäden nach einer Strahlentherapie (RT) entstehen, näher untersucht. Es zeigte sichhierbei, dass es zu verschiedenen morphologischen Veränderungen kommt. Tiere, Methode: Insgesamt 18 Wistar-Ratten wurden in drei Gruppen unterteilt (1 Kontrollgruppe, 2 bestrahlte Gruppen). Durch einzelne, kardiale 20 Gy starke Strahlungsdosen wurden langzeitliche Herzschäden induziert. Die biodiversen Untersuchungen wurden mittels dem Wirkstoff Technetium (99mTc) sestamibi und histologischen Analysen entweder 4 oder 6 Monate nach der Strahlenbehandlung. Zur Bestimmung der Myokardschädigung wurden einerseits die Anzahl apoptotisch-positiver bzw. degenerierten Myokardzellen ermittelt und andererseits die myokardiale Fibsose untersucht. Des Weiteren wurden vaskuläre Schädigungen und ultrazelluläre Strukturen näher untersucht. Ergebnisse: Es zeigte sich, das 6 Monate nach der Behandlung ein signifikanter Abfall der myokardischen Aufnahme zu beobachten war (p < 0,05), wohingegen die strahlungs-bedingte Apoptose der Myokardzellen innerhalb der ersten 4 Monate stetig anstieg und bis zum Ende der Untersuchungszeit signifikant erhöht blieb (p < 0,05). Des Weiteren traten durch die Bestrahlung nach 4 bzw. 6 Monaten mykardiale Degenerationen sowie pervaskuläre und interstitielle Fibrosen im Herz auf (p < 0,01). Das gesamte Ausmaß der myokardialen Schädigung war am Deutlichsten nach 6 Monaten zu beobachten (p < 0.05). Ultrastrukturell, wurden starke Veränderungen bei den kapillaren Endothelzellen und Myokardzellen sichtbar. Schlussfolgerung: Diese Studie zeigt deutlich, dass reduzierte Myokardperfusionen, die Monate nach Bestrahlungstherapien auftreten, durch schwere Myokardschädigungen hervorgerufen werden. Diese Schädigungen sind durch myokardiale Degeneration und Fibrosen charakterisiert.

 
  • References

  • 1 Adams MJ, Hardenbergh PH, Constine LS. et al. Radiation-associated cardiovascular disease. Crit Rev Oncol Hematol 2003; 45: 55-75.
  • 2 Berry GJ, Jorden M. Pathology of radiation and an- thracycline cardiotoxicity. Pediatr Blood Cancer 2005; 44: 630-637.
  • 3 Kirac S. Radyasyon ve Kalp. Anadolu Kardiyoloji Derg 2001; 1: 276-282.
  • 4 Goethals I, De Winter O, De Bondt P. et al. The clinical value of nuclear medicine in the assessment of irradiation-induced and anthracycline-associated cardiac damage. Ann Oncol 2002; 13: 1331-1339.
  • 5 Goethals I, Dierckx R, De Meerleer G. et al. The role of nuclear medicine in the prediction and detection of radiation-associated normal pulmonary and cardiac damage. J Nucl Med 2003; 44: 1531-1539.
  • 6 Gyenes G, Fornander T, Carlens P. et al. Detection of radiation-induced myocardial damage by tech- netium-99m sestamibi scintigraphy. Eur J Nucl Med 1997; 24: 286-292.
  • 7 Hardenbergh PH, Munley MT, Bentel GC. et al. Cardiac perfusion changes in patients treated for breast cancer with radiation therapy and doxorubicin: preliminary results. Int J Radiat Oncol Biol Phys 2001; 49: 1023-1028.
  • 8 Seddon B, Cook A, Gothard L. et al. Detection of defects in myocardial perfusion imaging in patients with early breast cancer treated with radiotherapy. Radiother Oncol 2002; 64: 53-63.
  • 9 Pierga JY, Maunoury C, Valette H. et al. Follow-up thallium-201 scintigraphy after mantle field radiotherapy for Hodgkin's disease. Int J Radiat Oncol Biol Phys 1993; 25: 871-876.
  • 10 Prosnitz RG, Marks LB. Radiation-induced heart disease: vigilance is still required. J Clin Oncol 2005; 23: 7391-7394.
  • 11 Girinsky T, Cordova A, Rey A. et al. Thallium-201 scintigraphy is not predictive of late cardiac complications in patients with Hodgkin's disease treated with mediastinal radiation. Int J Radiat Oncol Biol Phys 2000; 48: 1503-1506.
  • 12 Tokatli F, Uzal C, Doganay L. et al. The potential car- dioprotective effects of amifostine in irradiated rats. Int J Radiat Oncol Biol Phys 2004; 58: 1228-1234.
  • 13 Yurekli Y, Unak P, Ertay T. et al. Radiopharmaceuti- cal model using 99mTc-MIBI to evaluate amifos- tine protection against doxorubicin cardiotoxicity in rats. Ann Nucl Med 2005; 19: 197-200.
  • 14 Verberne HJ, Sloof GW, Beets AL. et al. 125I-BMIPP and 18F-FDG uptake in a transgenic mouse model of stunned myocardium. Eur J Nucl Med Mol Imaging 2003; 30: 431-439.
  • 15 Kruse JJ, Strootman EG, Wondergem J. Effects of amifostine on radiation-induced cardiac damage. Acta Oncol 2003; 42: 4-9.
  • 16 Yulug E, Tekinbas C, Ulusoy H. et al. The effects of oxidative stress on the liver and ileum in rats caused by one-lung ventilation. J Surg Res 2007; 139: 253-260.
  • 17 Kato K, Yin H, Agata J. et al. Adrenomedullin gene delivery attenuates myocardial infarction and apoptosis after ischemia and reperfusion. Am J Physiol Heart Circ Physiol 2003; 285: H1506-1514.
  • 18 Khan MY. Radiation-induced cardiomyopathy. I. An electron microscopic study of cardiac muscle cells. Am J Pathol 1973; 73: 131-146.
  • 19 Gao M, Shirato H, Miyasaka K. et al. Induction of growth factors in rat cardiac tissue by X irradiation. Radiat Res 2000; 153: 540-547.
  • 20 Blankenberg F, Narula J, Strauss HW. In vivo detection of apoptotic cell death: a necessary measurement for evaluating therapy for myocarditis, ischemia, and heart failure. J Nucl Cardiol 1999; 6: 531-539.
  • 21 Yaoita H, Maruyama Y. Intervention for apoptosis in cardiomyopathy. Heart Fail Rev 2008; 13: 181-191.
  • 22 Eichhorn EJ, Bristow MR. Medical therapy can improve the biological properties of the chronically failing heart. A new era in the treatment of heart failure. Circulation 1996; 94: 2285-2296.
  • 23 Hancock SL, Tucker MA, Hoppe RT. Factors affecting late mortality from heart disease after treatment of Hodgkin's disease. JAMA 1993; 270: 1949-1955.
  • 24 Gyenes G, Fornander T, Carlens P. et al. Morbidity of ischemic heart disease in early breast cancer 15-20 years after adjuvant radiotherapy. Int J Radiat Oncol Biol Phys 1994; 28: 1235-1241.
  • 25 Schultz-Hector S, Trott KR. Radiation-induced cardiovascular diseases: is the epidemiologic evidence compatible with the radiobiologic data?. Int J Radiat Oncol Biol Phys 2007; 67: 10-18.
  • 26 Schultz-Hector S, Kallfass E, Sund M. Radiation sequelae in the large arteries. A review of clinical and experimental data. Strahlenther Onkol. 1995; 171: 427-436.
  • 27 Lauk S, Trott KR. Endothelial cell proliferation in the rat heart following local heart irradiation. Int J Radiat Biol 1990; 57: 1017-1030.
  • 28 Schultz-Hector S. Experimental studies on the pa- thogenesis of damage in the heart. Recent Results Cancer Res 1993; 130: 145-156.
  • 29 Wondergem J, van der Laarse A, van Ravels FJ. et al. In vitro assessment of cardiac performance after irradiation using an isolated working rat heart preparation. Int J Radiat Biol 1991; 59: 1053-1068.
  • 30 Cowen D, Gonzague-Casabianca L, Brenot-Rossi I. et al. Thallium-201 perfusion scintigraphy in the evaluation of late myocardial damage in left-side breast cancer treated with adjuvant radiotherapy. Int J Radiat Oncol Biol Phys 1998; 41: 809-815.
  • 31 Lauk S, Kiszel Z, Buschmann J. et al. Radiation-induced heart disease in rats. Int J Radiat Oncol Biol Phys 1985; 11: 801-808.
  • 32 Schultz-Hector S, Sund M, Thames HD. Fraction- ation response and repair kinetics of radiation-induced heart failure in the rat. Radiother Oncol 1992; 23: 33-40.
  • 33 Fajardo LF, Stewart JR. Experimental radiation-induced heart disease. Am J Pathol 1970; 59: 299-316.
  • 34 Lauk S, Rüth S, Trott KR. The effects of dose-fractionation on radiation-induced heart disease in rats. Radiother Oncol 1987; 8: 363-367.