Vet Comp Orthop Traumatol 2018; 31(01): 010-016
DOI: 10.3415/VCOT-17-06-0080
Original Research
Schattauer GmbH Stuttgart

In Vivo Evaluation of Biodegradability and Biocompatibility of Fe30Mn Alloy

Marine Traverson
,
Michael Heiden
,
Lia A. Stanciu
,
Eric A. Nauman
,
Yava Jones-Hall
,
Gert J. Breur
Further Information

Publication History

05 June 2017

04 October 2017

Publication Date:
11 January 2018 (online)

Abstract

Objectives This study aims to evaluate the biodegradability and biocompatibility of an alloy of iron and manganese (Fe30Mn) in a bone model in vivo.

Methods Resorption of a Fe30Mn wire was compared with traditional permanent 316L stainless steel (SS) wire after bilateral transcondylar femoral implantation in 12 rats. Evaluation of biodegradation over 6 months was performed using radiography, post-mortem histology and microscopic implant surface analysis.

Results Corrosion and resorption of the novel iron-manganese implant with formation of an iron oxide corrosion layer was noted on all post-mortem histological sections and macroscopic specimens (corrosion fraction of 0.84 and 0 for Fe30Mn and 316L SS, respectively). Increased bone ongrowth was observed at the wire-bone interface (bone ongrowth fraction of 0.61 and 0.34 for Fe30Mn and 316L SS, respectively). Occasionally, poorly stained newly formed bone and necrotic bone in contact with corrosion was seen. In bone marrow, Fe30Mn alloy was scored as a mild local irritant compared with 316L SS (biocompatibility score of 8.8 and 5.3, respectively). There was no evidence of systemic adverse reaction.

Clinical Significance Resorbable iron-manganese alloys may offer a promising alternative to permanent metallic implants. Further in vivo studies to control implant resorption at a rate suitable for fracture healing and to confirm the biocompatibility and biosafety of the resorbable Fe30Mn metallic implant are necessary prior to use in clinical settings.

Author Contribution

M. Heide, L. A. Stanciu, E. A. Nauman, and G. J. Breur contributed to the conception of the study and the study design. M. Traverson, M. Heiden, Y. Jones-Hall, and G. J. Breur contributed to the acquisition of data. M. Traverson and G. J. Breur contributed to data analysis and interpretation. All authors contributed to drafting or revising and approval of the manuscript.


 
  • References

  • 1 Witte F. The history of biodegradable magnesium implants: a review. Acta Biomater 2010; 6 (05) 1680-1692
  • 2 Witte F, Kaese V, Haferkamp H. , et al. In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials 2005; 26 (17) 3557-3563
  • 3 Witte F, Hort N, Vogt C. , et al. Degradable biomaterials based on magnesium corrosion. Curr Opin Solid State Mat 2008; 12 (5–6): 63-72
  • 4 Kirkland NT, Birbilis N, Staiger MP. Assessing the corrosion of biodegradable magnesium implants: a critical review of current methodologies and their limitations. Acta Biomater 2012; 8 (03) 925-936
  • 5 Choudhary L, Raman RK. Magnesium alloys as body implants: fracture mechanism under dynamic and static loadings in a physiological environment. Acta Biomater 2012; 8 (02) 916-923
  • 6 Staiger MP, Pietak AM, Huadmai J, Dias G. Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials 2006; 27 (09) 1728-1734
  • 7 Chaya A, Yoshizawa S, Verdelis K. , et al. In vivo study of magnesium plate and screw degradation and bone fracture healing. Acta Biomater 2015; 18: 262-269
  • 8 Mueller WD, Lucia Nascimento M, Lorenzo de Mele MF. Critical discussion of the results from different corrosion studies of Mg and Mg alloys for biomaterial applications. Acta Biomater 2010; 6 (05) 1749-1755
  • 9 Hermawan H, Alamdari H, Mantovani D, Dube D. Iron-manganese: new class of metallic degradable biomaterials prepared by powder metallurgy. Powder Metall 2008; 51 (01) 38-45
  • 10 Kraus T, Moszner F, Fischerauer S. , et al. Biodegradable Fe-based alloys for use in osteosynthesis: outcome of an in vivo study after 52 weeks. Acta Biomater 2014; 10 (07) 3346-3353
  • 11 Schaffer JE, Nauman EA, Stanciu LA. Cold drawn bioabsorbable ferrous and ferrous composite wires: an evaluation of in vitro vascular cytocompatibility. Acta Biomater 2013; 9 (10) 8574-8584
  • 12 Peuster M, Hesse C, Schloo T, Fink C, Beerbaum P, von Schnakenburg C. Long-term biocompatibility of a corrodible peripheral iron stent in the porcine descending aorta. Biomaterials 2006; 27 (28) 4955-4962
  • 13 Hermawan H, Purnama A, Dube D, Couet J, Mantovani D. Fe-Mn alloys for metallic biodegradable stents: degradation and cell viability studies. Acta Biomater 2010; 6 (05) 1852-1860
  • 14 Hermawan H, Dubé D, Mantovani D. Degradable metallic biomaterials: design and development of Fe-Mn alloys for stents. J Biomed Mater Res A 2010; 93 (01) 1-11
  • 15 Schaffer JE, Nauman EA, Stanciu LA. Cold-drawn bioabsorbable ferrous and ferrous composite wires: an evaluation of mechanical strength and fatigue durability. Metall Mater Trans, B, Process Metall Mater Proc Sci 2012; 43 (04) 984-994
  • 16 Heiden M, Huang S, Nauman E, Johnson D, Stanciu L. Nanoporous metals for biodegradable implants: Initial bone mesenchymal stem cell adhesion and degradation behavior. J Biomed Mater Res A 2016; 104 (07) 1747-1758
  • 17 Amerstorfer F, Fischerauer SF, Fischer L. , et al. Long-term in vivo degradation behavior and near-implant distribution of resorbed elements for magnesium alloys WZ21 and ZX50. Acta Biomater 2016; 42: 440-450
  • 18 ISO 10993-6:2016. Biological evaluation of medical devices -- Part 6: Tests for local effects after implantation. ISO/TC 194.
  • 19 Levy BS, Nassetta WJ. Neurologic effects of manganese in humans: a review. Int J Occup Environ Health 2003; 9 (02) 153-163
  • 20 O'Neal SL, Zheng W. Manganese toxicity upon overexposure: a decade in review. Curr Environ Health Rep 2015; 2 (03) 315-328
  • 21 Scheideler L, Füger C, Schille C. , et al. Comparison of different in vitro tests for biocompatibility screening of Mg alloys. Acta Biomater 2013; 9 (10) 8740-8745
  • 22 Yoshizawa S, Chaya A, Verdelis K, Bilodeau EA, Sfeir C. An in vivo model to assess magnesium alloys and their biological effect on human bone marrow stromal cells. Acta Biomater 2015; 28: 234-239
  • 23 Witte F, Ulrich H, Rudert M, Willbold E. Biodegradable magnesium scaffolds: Part 1: Appropriate inflammatory response. J Biomed Mater Res A 2007; 81 (03) 748-756
  • 24 Janning C, Willbold E, Vogt C. , et al. Magnesium hydroxide temporarily enhancing osteoblast activity and decreasing the osteoclast number in peri-implant bone remodelling. Acta Biomater 2010; 6 (05) 1861-1868
  • 25 Witte F, Ulrich H, Palm C, Willbold E. Biodegradable magnesium scaffolds: Part II: Peri-implant bone remodeling. J Biomed Mater Res A 2007; 81 (03) 757-765
  • 26 Yamasaki Y, Yoshida Y, Okazaki M. , et al. Synthesis of functionally graded MgCO3 apatite accelerating osteoblast adhesion. J Biomed Mater Res 2002; 62 (01) 99-105
  • 27 Yamasaki Y, Yoshida Y, Okazaki M. , et al. Action of FGMgCO3Ap-collagen composite in promoting bone formation. Biomaterials 2003; 24 (27) 4913-4920
  • 28 Zreiqat H, Howlett CR, Zannettino A. , et al. Mechanisms of magnesium-stimulated adhesion of osteoblastic cells to commonly used orthopaedic implants. J Biomed Mater Res 2002; 62 (02) 175-184
  • 29 Zhang Y, Xu J, Ruan YC. , et al. Implant-derived magnesium induces local neuronal production of CGRP to improve bone-fracture healing in rats. Nat Med 2016; 22 (10) 1160-1169
  • 30 Chen XD. Magnesium-based implants: beyond fixators. J Orthop Transl 2017; 10: 1-4