Planta Med 2009; 75(7): 672-682
DOI: 10.1055/s-0029-1185379
Plant Analysis
Review
© Georg Thieme Verlag KG Stuttgart · New York

Natural Product Analysis over the Last Decades

Andrew Marston1 , Kurt Hostettmann1
  • 1Laboratory of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
Further Information

Publication History

received Oct. 21, 2008 revised January 2, 2009

accepted January 13, 2009

Publication Date:
04 March 2009 (online)

Abstract

Progress in natural product chemistry has always been strongly linked to innovations in analytical technology. The characterisation of metabolites in complex mixtures requires sophisticated techniques, which should provide good sensitivity and selectivity as well as structural information on the constituents of interest. This review outlines the most important chromatographic and spectral techniques which have been introduced in the field of natural products. Although there has been a very rapid evolution of methods over the last 50 years, the introduction of high-throughput screening programmes require even more efficient and sensitive methodologies which yield adequate on-line information for metabolite structure determination.

References

  • 1 De Rijke E, Out P, Niessen W MA, Ariese F, Gooijer C, Brinkman U AT. Analytical separation and detection methods for flavonoids.  J Chromatogr A. 2006;  1112 31-63
  • 2 Schreier P, Herderich M, Humpf H U, Schwab W. Natural product analysis. Berlin; Springer 2000
  • 3 Marston A. Role of advances in chromatographic techniques in phytochemistry.  Phytochemistry. 2007;  68 2786-2798
  • 4 Tswett M S. Adsorptionsanalyse und chromatographische Methode. Anwendung auf die Chemie des Chlorophylls.  Ber Dtsch Bot Ges. 1906;  24 384-393
  • 5 Martin A JP, Synge R LM. A new form of chromatogram employing two liquid phases.  Biochem J. 1941;  35 1358-1368
  • 6 Consden R, Gordon A H, Martin A JP. Qualitative analysis of proteins: a partition chromatographic method with paper.  Biochem J. 1944;  38 224-232
  • 7 Izmailov N A, Shraiber M S. Displacement chromatography.  Farmatsia (Russ.). 1938;  3 1-12
  • 8 Martin A JP, James A T. Gas-liquid partition chromatography: the separation and micro-estimation of volatile fatty acids from formic acid to dodecanoic acid.  Biochem J. 1952;  50 679-690
  • 9 Umano K, Hagi Y, Nakahara K, Shoji A, Shibamoto T. Volatile chemicals identified in extracts from leaves of Japanese mugwort (Artemisia princeps Pamp.).  J Agric Food Chem. 2000;  48 3463-3469
  • 10 Stahl E. Thin-layer chromatography. II. Standardization, detection, documentation and application.  Chemiker-Zeitung. 1958;  82 323-329
  • 11 Hostettmann K, Terreaux C, Marston A, Potterat O. The role of planar chromatography in the rapid screening and isolation of bioactive compounds from medicinal plants.  J Planar Chromatogr. 1997;  10 251-257
  • 12 Stahl E. Dünnschicht-Chromatographie, ein Laboratoriumshandbuch, 2nd edition. Berlin; Springer 1967
  • 13 Reich E, Schibli. A. High-performance thin-layer chromatography for the analysis of medicinal plants. New York; Thieme Medical Publishers 2007
  • 14 Wagner H, Bladt S. Plant drug analysis: a thin-layer chromatography atlas, 2nd edition. Berlin; Springer 1995
  • 15 Sherma J. Planar chromatography.  Anal Chem. 2008;  80 4253-4267
  • 16 Tyihak E, Mincsovics E, Kalasz H. New planar liquid chromatographic technique – overpressured thin-layer chromatography.  J Chromatogr. 1979;  174 75-81
  • 17 Burger K. DC‐PMD, Dünnschicht-Chromatographie mit Gradienten-Elution im Vergleich zur Säulenflüssigskeits-Chromatographie.  Z Anal Chem. 1984;  318 228-233
  • 18 Horvath C G, Preiss B A, Lipsky S R. Fast liquid chromatography. Investigation of operating parameters and the separation of nucleotides on pellicular ion exchangers.  Anal Chem. 1967;  39 1422-1428
  • 19 Spackman D H, Stein W H, Moore S. Automatic recording apparatus for use in chromatography of amino acids.  Anal Chem. 1958;  30 1190-1206
  • 20 LaCourse W R. Column liquid chromatography: equipment and instrumentation.  Anal Chem. 2002;  74 2813-2832
  • 21 Kingston D GI. High performance liquid chromatography of natural products.  J Nat Prod. 1979;  42 237-260
  • 22 Sakakibara H, Honda Y, Nakagawa S, Ashida H, Kanazawa K. Simultaneous determination of all polyphenols in vegetables, fruits and teas.  J Agric Food Chem. 2003;  51 571-581
  • 23 Lindon J C, Nicholson J K, Sidelmann U G, Wilson I D. Directly coupled HPLC‐NMR and its application to drug metabolism.  Drug Metab Rev. 1997;  29 705-746
  • 24 Nguyen D T, Guillarme D, Rudaz S, Veuthey J L. Fast analysis in liquid chromatography using small particle size and high pressure.  J Sep Sci. 2006;  29 1836-1848
  • 25 Chan E CY, Yap S L, Lau A J, Leow P C, Toh D F, Koh H L. Ultra-performance liquid chromatography/time of flight mass spectrometry based metabolomics of raw and steamed Panax notoginseng.  Rapid Commun Mass Spectrom. 2007;  21 519-528
  • 26 Issaq H J. Capillary electrophoresis of natural products – I.  Electrophoresis. 1997;  18 2438-2452
  • 27 Issaq H J. Capillary electrophoresis of natural products – II.  Electrophoresis. 1999;  20 3190-3202
  • 28 Tomas-Barberan F A. Capillary electrophoresis: a new technique in the analysis of plant secondary metabolites.  Phytochem Anal. 1995;  6 177-193
  • 29 Ito Y. Golden rules and pitfalls in selecting optimum conditions for high-speed countercurrent chromatography.  J Chromatogr A. 2005;  1065 145-168
  • 30 Ito Y, Weinstein M A, Aoki I, Harada R, Kimura E, Nunogaki K. The coil planet centrifuge.  Nature. 1966;  212 985-987
  • 31 Bloch F, Hansen W W, Packard M. Nuclear induction.  Physics Rev. 1946;  69 127
  • 32 Purcell E M, Torrey H C, Pound R V. Resonance absorption by nuclear magnetic moments in a solid.  Physics Rev. 1946;  69 37-38
  • 33 Morris G A, Freeman R. Enhancement of nuclear magnetic resonance signals by polarization transfer.  J Am Chem Soc. 1979;  101 760-762
  • 34 Aue W P, Bartholdi E, Ernst R R. Two-dimensional spectroscopy. Application to nuclear magnetic resonance.  J Chem Phys. 1976;  64 2229-2246
  • 35 Pauli G F, Jaki B U, Lankin D C. Quantitative 1H NMR: development and potential of a method for natural products analysis.  J Nat Prod. 2005;  68 133-149
  • 36 Hu J F, Garo E, Yoo H D, Cremin P A, Zeng L, Goering M G, O'Neil-Johnson M, Eldridge G R. Application of capillary-scale NMR for the structure determination of phytochemicals.  Phytochem Anal. 2005;  16 127-133
  • 37 Jaroszewski J W. Hyphenated NMR methods in natural products research, part 1: Direct hyphenation.  Planta Med. 2005;  71 691-700
  • 38 Dessy R E, Reynolds W R, Nunn W G, Titus C A. New mini-computer automated linear photodiode arrays spectrometer system for high-resolution liquid chromatography.  J Chromatogr. 1976;  126 347-368
  • 39 George S A, Maute A. A photodiode array detection system: design, concept and implementation.  Chromatographia. 1982;  15 419-425
  • 40 Hostettmann K, Domon B, Schaufelberger D, Hostettmann M. On-line high-performance liquid chromatography – ultraviolet-visible spectroscopy of phenolic compounds in plant extracts using post-column derivatization.  J Chromatogr. 1984;  283 137-147
  • 41 Niessen W MA. State-of-the-art in liquid chromatography-mass spectrometry.  J Chromatogr A. 1999;  856 179-197
  • 42 Thomson B A, Danylewychmay L, Henion J D. LC‐MS‐MS with an atmospheric pressure chemical ionization source.  Abstr Pap Am Chem Soc. 1983;  19
  • 43 Whitehouse C M, Dreyer R N, Yamashita M, Fenn J B. Electrospray interface for liquid chromatographs and mass spectrometers.  Anal Chem. 1985;  57 675-679
  • 44 Niessen W MA. Progress in liquid chromatography-mass spectrometry instrumentation and its impact on high-throughput screening.  J Chromatogr A. 2003;  1000 413-436
  • 45 Watanabe N, Niki E. Direct-coupling of FT‐NMR to high-performance liquid-chromatography.  Proc Jpn Acad Ser B. 1978;  54 194-199
  • 46 Spraul M, Hofmann M, Dvortsak P, Nicolson J K, Wilson I D. High-performance liquid chromatography coupled to high-field proton nuclear magnetic resonance spectroscopy: application to the urinary metabolites of ibuprofen.  Anal Chem. 1993;  65 327-330
  • 47 Spring O, Buschmann H, Vogler B, Schilling E, Spraul M, Hoffmann M. Sesquiterpene lactone chemistry of Zaluzania grayana from on-line LC‐NMR measurements.  Phytochemistry. 1995;  39 609-612
  • 48 Hostettmann K, Wolfender J L, Rodriguez S. Rapid detection and subsequent isolation of bioactive constituents of crude plant extracts.  Planta Med. 1997;  63 2-10
  • 49 Ioset J R, Wolfender J L, Marston A, Gupta M P, Hostettmann K. Identification of two isomeric meroterpenoid naphthoquinones from Cordia linnaei by liquid chromatography-mass spectrometry and liquid chromatography-nuclear magnetic resonance spectroscopy.  Phytochem Anal. 1999;  10 137-142
  • 50 Corcoran O, Spraul M. LC‐NMR‐MS in drug discovery.  Drug Discov Today. 2003;  8 624-631
  • 51 Jaroszewski J W. Hyphenated NMR methods in natural products research, part 1: direct hyphenation.  Planta Med. 2005;  71 691-700
  • 52 Jaroszewski J W. Hyphenated NMR methods in natural products research, part 2: HPLC‐SPE‐NMR and other new trends in NMR hyphenation.  Planta Med. 2005;  71 795-802
  • 53 Wilcox C D, Phelan R M. The use of solid-phase extraction columns to effect simple off-line LC/MS, LC/NMR and LC/FTIR.  J Chromatogr Sci. 1986;  24 130-133
  • 54 Griffiths L, Horton R. Optimization of LC‐NMR III – Increased signal-to-noise ratio through column trapping.  Magn Reson Chem. 1998;  36 104-109
  • 55 Nyberg N T, Baumann H, Kenne L. Application of solid-phase extraction coupled to an NMR flow-probe in the analysis of HPLC fractions.  Magn Reson Chem. 2001;  39 236-240
  • 56 Lambert M, Wolfender J L, Staerk D, Brogger Christensen S, Hostettmann K, Jaroszewski J W. Identification of natural products using HPLC‐SPE combined with CapNMR.  Anal Chem. 2007;  79 727-735
  • 57 Bringmann G, Messer K, Saeb W, Petes E M, Peters K. The absolute configuration of (1)-isoshinanolone and in situ LC–CD analysis of its stereoisomers from crude extracts.  Phytochemistry. 2001;  56 387-391
  • 58 Hamburger M, Hostettmann K. Bioactivity in plants: the link between phytochemistry and medicine.  Phytochemistry. 1991;  30 3864-3874
  • 59 Hostettmann K, Marston A, Wolfender J L. Strategy in the search for new biologically active plant constituents. Hostettmann K, Marston A, Maillard M, Hamburger M Phytochemistry of plants used in traditional medicine. Oxford; Oxford Science Publications 1995: 17-45
  • 60 Xing J, Xie C, Lou H. Recent applications of liquid chromatography-mass spectrometry in natural products bioanalysis.  J Pharm Biomed Anal. 2007;  44 368-378
  • 61 Marston A, Maillard M, Hostettmann K. The role of TLC in the investigations of medicinal plants of Africa, South America and other tropical regions.  GIT Laboratory J. 1997;  1 36-39
  • 62 Poole C F. Thin-layer chromatography: challenges and opportunities.  J Chromatogr A. 2003;  1000 963-984
  • 63 Homans A L, Fuchs A. Direct bioautography on thin layer chromatograms as a method for detecting fungitoxic substances.  J Chromatogr. 1970;  51 327-329
  • 64 Marston A, Kissling J, Hostettmann K. A rapid TLC bioautographic method for the detection of acetylcholinesterase and butyrylcholinesterase inhibitors in plants.  Phytochem Anal. 2002;  13 51-54
  • 65 Koleva I I, Niederländer H AG, van Beek T A. An on-line HPLC method for detection of radical scavenging compounds in complex mixtures.  Anal Chem. 2000;  72 2323-2328
  • 66 Pukalskas A, van Beek T A, de Waard P. Development of a triple hyphenated HPLC-radical scavenging detection-DAD‐SPE‐NMR system for the rapid identification of antioxidants in complex plant extracts.  J Chromatogr A. 2005;  1074 81-88

Prof. Kurt Hostettmann

Laboratory of Pharmacognosy and Phytochemistry
School of Pharmaceutical Sciences
University of Geneva

Quai Ernest-Ansermet 30

1211 Geneva 4

Switzerland

Phone: + 41 2 23 79 34 01

Fax: + 41 2 23 79 33 99

Email: kurt.hostettmann@unige.ch

    >