Planta Med 2015; 81(06): 533-540
DOI: 10.1055/s-0034-1396139
Original Papers
Georg Thieme Verlag KG Stuttgart · New York

Eriocitrin and Apigenin as New Carbonic Anhydrase VA Inhibitors from a Virtual Screening of Calabrian Natural Products

Maria Concetta Gidaro
1   Dipartimento di Scienze della Salute, Università “Magna Graecia” di Catanzaro, Campus “S. Venuta”, Catanzaro, Italy
,
Francesca Alcaro
1   Dipartimento di Scienze della Salute, Università “Magna Graecia” di Catanzaro, Campus “S. Venuta”, Catanzaro, Italy
,
Simone Carradori
2   Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza University of Rome, Rome, Italy
,
Giosuè Costa
1   Dipartimento di Scienze della Salute, Università “Magna Graecia” di Catanzaro, Campus “S. Venuta”, Catanzaro, Italy
,
Daniela Vullo
3   Laboratorio di Chimica Bioinorganica, Polo Scientifico, Università degli Studi di Firenze, Sesto Fiorentino, Florence, Italy
,
Claudiu T. Supuran
3   Laboratorio di Chimica Bioinorganica, Polo Scientifico, Università degli Studi di Firenze, Sesto Fiorentino, Florence, Italy
,
Stefano Alcaro
1   Dipartimento di Scienze della Salute, Università “Magna Graecia” di Catanzaro, Campus “S. Venuta”, Catanzaro, Italy
› Author Affiliations
Further Information

Publication History

received 03 July 2014
revised 06 October 2014

accepted 22 November 2014

Publication Date:
15 January 2015 (online)

Abstract

In this work, we performed a structure-based virtual screening against five carbonic anhydrase isoforms using, as a ligand library, natural components of Citrus bergamia (Bergamot) and Allium cepa var. Tropea (red onion) sources, which are some typical Calabrian products. The most relevant Bergamot and red onion components, identified as potentially new hits by means of the computational work, were submitted to in vitro tests in order to confirm the ability to exert the predicted biological activity. Apigenin and eriocitrin were identified as new potent inhibitors of human carbonic anhydrase VA isozyme.

Supporting Information

 
  • References

  • 1 Newman DJ, Cragg GM. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod 2012; 75: 311-335
  • 2 Langer T, Hoffmann RD. Virtual screening: an effective tool for lead structure discovery?. Curr Pharm Des 2001; 7: 509-527
  • 3 Artese A, Alcaro S, Moraca F, Reina R, Ventura M, Costantino G, Beccari AR, Ortuso F. State-of-the-art and dissemination of computational tools for drug-design purposes: a survey among Italian academics and industrial institutions. Future Med Chem 2013; 5: 907-927
  • 4 Lavecchia A, Di Giovanni C. Virtual screening strategies in drug discovery: a critical review. Current Med Chem 2013; 20: 2839-2860
  • 5 Alcaro S, Musetti C, Distinto S, Casatti M, Zagotto G, Artese A, Parrotta L, Moraca F, Costa G, Ortuso F, Maccioni E, Sissi C. Identification and characterization of new DNA G-quadruplex binders selected by a combination of ligand and structure based virtual screening approaches. J Med Chem 2013; 56: 843-855
  • 6 Artese A, Costa G, Ortuso F, Parrotta L, Alcaro S. Identification of new natural DNA G-quadruplex binders selected by a structure-based virtual screening approach. Molecules 2013; 18: 12051-12070
  • 7 Statti GA, Conforti F, Sacchetti G, Muzzoli M, Agrimonti C, Menichini F. Chemical and biological diversity of Bergamot (Citrus bergamia) in relation to environmental factors. Fitoterapia 2004; 75: 212-216
  • 8 Furia E, Naccarato A, Sindona G, Stabile G, Tagarelli A. Multielement fingerprinting as a tool in origin authentication of PGI food products: Tropea red onion. J Agric Food Chem 2011; 59: 8450-8457
  • 9 Gennaro L, Leonardi C, Esposito F, Salucci N, Maiani G, Quaglia G, Fogliano V. Flavonoid and carbohydrate contents in Tropea red onions: effects of homelike peeling and storage. J Agric Food Chem 2002; 50: 1904-1910
  • 10 Dorant E, Van den Brandt PA, Goldbohm RA, Sturmans F. Consumption of onions and a reduced risk of stomach carcinoma. Gastroenterology 1996; 110: 12
  • 11 Suh HJ, Lee JM, Cho JS, Kim YS, Chung SH. Radical scavenging compounds in onion skin. Food Res Int 1999; 32: 659
  • 12 Pernice R, Borriello G, Ferracane R, Borrelli RC, Cennamo F, Ritieni A. Bergamot: A source of natural antioxidants for functionalized fruit juices. Food Chem 2009; 112: 545-550
  • 13 Tripoli E, La Guardia M, Giammanco S, Di Majo D, Giammanco M. Citrus flavonoids: Molecular structure, biological activity and nutritional properties: A review. Food Chem 2007; 104: 466-479
  • 14 Mollace V, Sacco I, Janda E, Malara C, Ventrice D, Colica C, Visalli V, Muscoli S, Ragusa S, Muscoli C, Rotiroti D, Romeo F. Hypolipemic and hypoglycaemic activity of bergamot polyphenols: from animal models to human studies. Fitoterapia 2007; 82: 309-316
  • 15 Supuran CT. Carbonic anhydrases: novel therapeutic applications for inhibitors and activators. Nat Rev Drug Discov 2008; 7: 168-181
  • 16 Supuran CT, Scozzafava A. Carbonic anhydrases as targets for medicinal chemistry. Bioorg Med Chem 2007; 15: 4336-4350
  • 17 Pastorekova S, Parkkila S, Pastorek J, Supuran CT. Carbonic anhydrases: current state of the art, therapeutic applications and future prospects. J Enz Inhib Med Chem 2004; 19: 199-229
  • 18 Supuran CT, Scozzafava A, Conway J. Carbonic anhydrases: catalytic mechanisms, distribution and physiological roles. In: Supuran CT, Scozzafava A, Conway J, editors Carbonic anhydrase: its inhibitors and activators. Boca Raton: CRC Press; 2004: 1-24
  • 19 Supuran CT. Carbonic anhydrases as drug targets–an overview. Curr Top Med Chem 2007; 7: 825-833
  • 20 Aggarwal M, Kondeti B, McKenna R. Insights towards sulfonamide drug specificity in α-carbonic anhydrases. Bioorg Med Chem 2013; 21: 1526-1533
  • 21 Alterio V, Fiore AD, DʼAmbrosio K, Supuran CT, Simone GD. Multiple binding modes of inhibitors to carbonic anhydrases: how to design specific drugs targeting 15 different isoforms?. Chem Rev 2012; 112: 4421-4468
  • 22 Gieling RG, Williams KJ. Carbonic anhydrase IX as a target for metastatic disease. Biorg Med Chem 2013; 21: 1470-1476
  • 23 Ekinci D, Karagoz L, Ekinci D, Senturk M, Supuran CT. Carbonic anhydrase inhibitors: in vitro inhibition of α isoforms (hCA I, hCA II, bCA III, hCA IV) by flavonoids. J Enz Inhib Med Chem 2013; 28: 283-288
  • 24 Koz Ö, Ekinci D, Perrone A, Piacente S, Alankuş-Çalışkan Ö, Bedir E, Supuran CT. Analysis of saponins and phenolic compounds as inhibitors of α-carbonic anhydrase isoenzymes. J Enz Inhib Med Chem 2013; 28: 412-417
  • 25 Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE. The Protein Data Bank. Nucleic Acids Res 2000; 28: 235-242
  • 26 Ma DL, Chana DSH, Leung CH. Molecular docking for virtual screening of natural product databases. Chem Sci 2011; 2: 1656
  • 27 Software: MacroModel, version 10.3. New York: Schrödinger, LLC; 2014
  • 28 Software: PyMOL Molecular Graphics System, Version 1.7.0.0. New York: Schrödinger, LLC; 2014
  • 29 Shah GN, Hewett-Emmett D, Grubb JH, Migas MC, Fleming RE, Waheed A, Sly WS. Mitochondrial carbonic anhydrase CA VB: differences in tissue distribution and pattern of evolution from those of CA VA suggest distinct physiological roles. PNAS 2000; 97: 1677-1682
  • 30 De Simone G, Supuran CT. Antiobesity carbonic anhydrase inhibitors. Curr Top Med Chem 2007; 7: 879-884
  • 31 Poulsen SA, Wilkinson BL, Innocenti A, Vullo D, Supuran CT. Inhibition of human mitochondrial carbonic anhydrases VA and VB with para-(4-phenyltriazole-1-yl)-benzenesulfonamide derivatives. Bioorg Med Chem Lett 2008; 18: 4624-4627
  • 32 DʼAscenzio M, Carradori S, De Monte C, Secci D, Ceruso M, Supuran CT. Design, synthesis and evaluation of N-substituted saccharin derivatives as selective inhibitors of tumor-associated carbonic anhydrase XII. Bioorg Med Chem 2014; 22: 1821-1831
  • 33 Kim JP, Lee I, Seo J, Jung M, Kim Y, Yim N, Bae K. Vitexin, orientin and other flavonoids from Spirodela polyrhiza inhibit adipogenesis in 3T3-L1 cells. Phytother Res 2010; 24: 1543-1548
  • 34 Hiramitsu M, Shimada Y, Kuroyanagi J, Inoue T, Katagiri T, Zang L, Nishimura Y, Nishimura N, Tanaka T. Eriocitrin ameliorates diet-induced hepatic steatosis with activation of mitochondrial biogenesis. Sci Rep 2014; 4: 3708
  • 35 PUBCHEM free web site. Available at. http://pubchem.ncbi.nlm.nih.gov Acessed January 10, 2014
  • 36 Software: Maestro, version 9.7. New York: Schrödinger, LLC; 2014
  • 37 Software: LigPrep, version 2.9. New York: Schrödinger, LLC; 2014
  • 38 Kirchmair J, Laggner C, Wolber G, Langer T. Comparative analysis of protein-bound ligand conformations with respect to catalystʼs conformational space subsampling algorithms. J Chem Inf Model 2005; 45: 422-430
  • 39 Congreve M, Murray CW, Blundell TL. Structural biology and drug discovery. Drug Disc Today 2005; 10: 895-907
  • 40 Chakravarty S, Kannan KK. Drug-protein interactions. Refined structures of three sulfonamide drug complexes of human carbonic anhydrase I enzyme. J Mol Biol 1994; 243: 298-309
  • 41 Moeker J, Peat TS, Bornaghi LF, Vullo D, Supuran CT, Poulsen SA. Cyclic secondary sulfonamides: unusually good inhibitors of cancer-related carbonic anhydrase enzymes. J Med Chem 2014; 57: 3522-3531
  • 42 Boriack-Sjodin PA, Heck RW, Laipis PJ, Silverman DN, Christianson DW. Structure determination of murine mitochondrial carbonic anhydrase V at 2.45-A resolution: implications for catalytic proton transfer and inhibitor design. Proc Natl Acad Sci U S A 1995; 92: 10949-10953
  • 43 Alterio V, Hilvo M, Di Fiore A, Supuran CT. Crystal structure of the catalytic domain of the tumor-associated human carbonic anhydrase IX. Proc Natl Acad Sci U S A 2009; 106: 16233-16238
  • 44 Dudutienė V, Zubrienė A, Smirnov A, Gylytė J, Timm D, Manakova E, Gražulis S, Matulis D. 4-Substituted-2,3,5,6-tetrafluorobenzenesulfonamides as inhibitors of carbonic anhydrases I, II, VII, XII, and XIII. Bioorg Med Chem 2013; 21: 2093-2106
  • 45 Software: Schrödinger Suite 2013 Protein Preparation Wizard; Epik version 2.7. New York: Schrödinger, LLC; 2013; Impact version 6.2. New York: Schrödinger, LLC; 2013; Prime version 3.4. New York: Schrödinger, LLC; 2014
  • 46 Software: Glide, version 6.2. New York: Schrödinger, LLC; 2014
  • 47 Khalifah RG. The carbon dioxide hydration activity of carbonic anhydrase. I. Stop-flow kinetic studies on the native human isoenzymes B and C. J Biol Chem 1971; 246: 2561-2573
  • 48 Lopez M, Drillaud N, Bornaghi LF, Poulsen SA. Synthesis of S-glycosyl primary sulfonamides. J Org Chem 2009; 74: 2811-2816
  • 49 Cheng HC. The power issue: determination of KB or Ki from IC50. A closer look at the Cheng-Prusoff equation, the Schild plot and related power equations. J Pharmacol Toxicol Methods 2001; 46: 61-71