Planta Med 2015; 81(04): 312-319
DOI: 10.1055/s-0034-1396308
Biological and Pharmacological Activity
Original Papers
Georg Thieme Verlag KG Stuttgart · New York

Suppression of Inducible Nitric Oxide Synthase Pathway by 7-Deacetylgedunin, a Limonoid from Xylocarpus sp.

Chanin Sarigaputi
1   Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
,
Nuanpan Sangpech
2   Medical Microbiology Interdisciplinary Program, Graduate School, Chulalongkorn University, Bangkok, Thailand
,
Tanapat Palaga
3   Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
,
Khanitha Pudhom
4   Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
› Author Affiliations
Further Information

Publication History

received 27 June 2014
revised 06 January 2015

accepted 07 January 2015

Publication Date:
25 February 2015 (online)

Abstract

In this study, limonoids isolated from Xylocarpus plants were tested for their in vitro anti-inflammatory effects. The results demonstrated that only 7-deacetylgedunin (1), a gedunin-type limonoid, significantly inhibited lipopolysaccharide- and interferon-γ-stimulated production of nitric oxide in murine macrophage RAW 264.7 cells. The suppression of nitric oxide production by 1 was correlated with the downregulation of mRNA and protein expression of inducible nitric oxide synthase. Mechanistic studies revealed that the transcriptional activity of nuclear factor-κB, IκBα degradation, and the activation of mitogen-activated protein kinases, stimulated with lipopolysaccharide and interferon-γ, were suppressed by 1.

Supporting Information

 
  • References

  • 1 Weninger SC, Yankner BA. Inflammation and Alzheimerʼs disease: the good, the bad, and the ugly. Nat Med 2001; 7: 527-528
  • 2 Bousquet J, Jeffery PK, Busse WW, Johnson M, Vignola AM. Asthma. From bronchoconstriction to airways inflammation and remodeling. Am J Respir Crit Care Med 2000; 161: 1720-1745
  • 3 Libby P. Inflammation in atherosclerosis. Nature 2002; 420: 868-874
  • 4 Rajput S, Wilber A. Roles of inflammation in cancer initiation, progression, and metastasis. Front Biosci (Schol Ed) 2010; 2: 176-183
  • 5 Christodoulou C, Choy EH. Joint inflammation and cytokine inhibition in rheumatoid arthritis. Clin Exp Med 2006; 6: 13-19
  • 6 Tufekci KU, Meuwissen R, Genc S, Genc K. Inflammation in Parkinsonʼs disease. Adv Protein Chem Struct Biol 2012; 88: 69-132
  • 7 Lonkar P, Dedon PC. Reactive species and DNA damage in chronic inflammation: reconciling chemical mechanisms and biological fates. Int J Cancer 2011; 128: 1999-2009
  • 8 Fujihara M, Muroi M, Tanamoto K, Suzuki T, Azuma H, Ikeda H. Molecular mechanisms of macrophage activation and deactivation by lipopolysaccharide: roles of the receptor complex. Pharmacol Ther 2003; 100: 171-194
  • 9 Aktan F. iNOS-mediated nitric oxide production and its regulation. Life Sci 2004; 75: 639-653
  • 10 Mancino A, Lawrence T. Nuclear-κB and tumor associated macrophages. Clin Cancer Res 2010; 16: 784-789
  • 11 Korhonen R, Lahti A, Kankaanranta H, Moilanen E. Nitric oxide production and signaling in inflammation. Curr Drug Targets Inflamm Allergy 2005; 4: 471-479
  • 12 Kubo I, Miura I, Nakanishi K. The structure of xylomollin, a secoiridoid hemiacetal acetal. J Am Chem Soc 1976; 98: 6704-6705
  • 13 Alvi KA, Crews P, Aalbersberg B, Prasad R. Limonoids from the Fijian medicinal plant dabi (Xylocarpus). Tetrahedron Lett 1991; 47: 8943-8948
  • 14 Kokpol U, Chavasiri W, Tip-pyang S, Veerachato G, Zhao FL, Simpson J, Weavers RT. A limonoid from Xylocarpus granatum . Phytochemistry 1995; 41: 903-905
  • 15 Yin S, Wang XN, Fan CQ, Lin LP, Ding J, Yue JM. Limonoids from the seeds of the marine mangrove Xylocarpus granatum . J Nat Prod 2007; 70: 682-685
  • 16 Wu J, Zhang S, Bruhn T, Xiao Q, Ding H, Bringmann G. Xylogranatins F–R: antifeedants from the Chinese mangrove, Xylocarpus granatum, a new biogenetic pathway to tetranotriterpenoids. Chem Eur J 2008; 14: 1129-1144
  • 17 Li MY, Yang SX, Pan JY, Xiao Q, Satyanandamurty T, Wu J. Moluccensins A–G, phragmalins with a conjugated C-30 carbonyl group from a Krishna mangrove, Xylocarpus moluccensis . J Nat Prod 2009; 72: 1657-1662
  • 18 Wu J, Yang SX, Li MY, Feng G, Pan JY, Xiao Q, Sinkkonen J, Satyanandamurty T. Limonoids and tirucallane derivatives from seeds of a Krishna mangrove, Xylocarpus moluccensis . J Nat Prod 2010; 73: 644-649
  • 19 Li J, Li MY, Feng G, Zhang J, Karonen M, Sinkkonen J, Satyanandamurty T, Wu J. Moluccensins R–Y, limonoids from the seeds of a mangrove, Xylocarpus moluccensis . J Nat Prod 2012; 75: 1277-1283
  • 20 Toume K, Kamiya K, Arai MA, Mori N, Sadhu SK, Ahmed F, Ishibashi M. Xylogranin B: a potent Wnt signal inhibitory limonoid from Xylocarpus granatum . Org Lett 2013; 15: 6106-6109
  • 21 Li J, Li MY, Bruhn T, Katele FZ, Xiao Q, Pedpradab P, Wu J, Bringmann G. Thaixylomolins A–C: limonoids featuring two new motifs from the Thai Xylocarpus moluccensis . Org Lett 2013; 15: 3682-3685
  • 22 Lakshmi V, Gupta P. An overview of the genus Xylocarpus . Nat Prod Res 2008; 22: 1197-1224
  • 23 Pudhom K, Sommit D, Nuclear P, Ngamrojanavanich N, Petsom A. Protoxylocarpins F–H, protolimonoids from seed kernels of Xylocarpus granatum . J Nat Prod 2009; 72: 2188-2191
  • 24 Pudhom K, Sommit D, Nuclear P, Ngamrojanavanich N, Petsom A. Moluccensins H–J, 30-ketophragmalin limonoids from Xylocarpus moluccensis . J Nat Prod 2010; 73: 263-266
  • 25 Sarigaputi C, Nuanyai T, Teerawatananond T, Pengpreecha S, Muangsin N, Pudhom K. Xylorumphiins A–D, mexicanolide limonoids from the seed kernels of Xylocarpus rumphii . J Nat Prod 2010; 73: 1456-1459
  • 26 Ravangpai W, Sommit D, Teerawatananond T, Sinpranee N, Palaga T, Pengpreecha S, Muangsin N, Pudhom K. Limonoids from seeds of Thai Xylocarpus moluccensis . Bioorg Med Chem Lett 2011; 21: 4485-4489
  • 27 Kikuchi T, Ishii K, Noto T, Takahashi A, Tabata K, Suzuki T, Akihisa T. Cytotoxic and apoptosis-inducing activities of limonoids from the seeds of Azadirachta indica (Neem). J Nat Prod 2011; 74: 866-870
  • 28 Lawrence T, Fong C. The resolution of inflammation: anti-inflammatory roles for NF-kappaB. Int J Biochem Cell Biol 2010; 42: 519-523
  • 29 Karin M, Greten FR. NF-kappaB: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol 2005; 5: 749-759
  • 30 Zhou HY, Shin EM, Guo LY, Youn UJ, Bae K, Kang SS, Zou LB, Kim YS. Anti-inflammatory activity of 4-methoxyhonokiol is a function of the inhibition of iNOS and COX-2 expression in RAW 264.7 macrophages via NF-κB, JNK and p 38 MAPK in activation. Eur J Pharmacol 2008; 586: 340-349
  • 31 Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR. Analysis of nitrate, nitrite, and [15 N] nitrate in biological fluids. Anal Biochem 1982; 126: 131-138
  • 32 Mendes SAC, Mansoor TA, Rodrigues A, Armas JB, Ferreira MJU. Anti-inflammatory guaiane-type sesquiterpenes from the fruits of Pittosporum undulatum . Phytochemistry 2013; 95: 308-314
  • 33 Shih MF, Cheng YD, Shen CR, Cherng JY. A molecular pharmacology study into the anti-inflammatory actions of Euphorbia hirta L. on the LPS-induced RAW 264.7 cells through selective iNOS protein inhibition. J Nat Med 2010; 64: 330-335
  • 34 Chantaranothai C, Palaga T, Karnchanatat A, Sangvanich P. Inhibition of nitric oxide production in the macrophage-like RAW 264.7 cell line by protein from the rhizomes of Zingiberaceae plants. Prep Biochem Biotechnol 2013; 43: 60-78
  • 35 Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 22DDCT method. Methods 2001; 25: 402-408