Planta Med 2015; 81(10): 847-854
DOI: 10.1055/s-0035-1546127
Natural Product Chemistry
Original Papers
Georg Thieme Verlag KG Stuttgart · New York

Lignans from the Fruits of Melia toosendan and Their Agonistic Activities on Melatonin Receptor MT1

Hao Wang
1   State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, P. R. China
2   University of Chinese Academy of Sciences, Beijing, P. R. China
,
Chang-An Geng
1   State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, P. R. China
,
Hong-Bo Xu
1   State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, P. R. China
2   University of Chinese Academy of Sciences, Beijing, P. R. China
,
Xiao-Yan Huang
1   State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, P. R. China
,
Yun-Bao Ma
1   State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, P. R. China
,
Cai-Yan Yang
1   State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, P. R. China
2   University of Chinese Academy of Sciences, Beijing, P. R. China
,
Xue-Mei Zhang
1   State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, P. R. China
,
Ji-Jun Chen
1   State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, P. R. China
› Author Affiliations
Further Information

Publication History

received 05 December 2014
revised 11 March 2015

accepted 22 April 2015

Publication Date:
17 June 2015 (online)

Abstract

Investigation on the fruits of Melia toosendan afforded seven new lignans (17), along with seventeen known compounds (824). The structures of the new compounds, involving four neo-lignans (14), two sesquilignans (56), and a nor-lignan (7), were elucidated based on extensive spectroscopic analyses (high-resolution electrospray ionization mass spectra, ultraviolet, infrared, one-dimensional and two-dimensional nuclear magnetic resonance). Compound 24 exhibited activity on melatonin receptor type 1 with an agonistic rate of 57.77 % at 1.02 mM according to the assay on HEK293 cell lines in vitro.

Supporting Information

 
  • References

  • 1 Tada K, Takido M, Kitanaka S. Limonoids from fruit of Melia toosendan and their cytotoxic activity. Phytochemistry 1999; 51: 787-791
  • 2 Xie F, Zhang M, Zhang CF, Wang ZT, Yu BY, Kou JP. Anti-inflammatory and analgesic activities of ethanolic extract and two limonoids from Melia toosendan fruit. J Ethnopharmacol 2008; 117: 463-466
  • 3 Zhang Y, Tang CP, Ke CQ, Li XQ, Xie H, Ye Y. Limonoids from the fruits of Melia toosendan . Phytochemistry 2012; 73: 106-113
  • 4 State Pharmacopoeia Committee. Chinese Pharmacopoeia. Beijing: China Medical Pharmaceutical Science and Technology Publishing House; 2010: 39-40
  • 5 Shi YL, Li MF. Biological effects of toosendanin, a triterpenoid extracted from Chinese traditional medicine. Prog Neurobiol 2007; 82: 1-10
  • 6 Isman MB. Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annu Rev Entomol 2006; 51: 45-66
  • 7 Zhao L, Huo CH, Shen LR, Yang Y, Zhang Q, Shi QW. Chemical constituents of plants from the genus Melia . Chem Biodivers 2010; 7: 839-859
  • 8 Tan QG, Luo XD. Meliaceous limonoids: chemistry and biological activities. Chem Rev 2011; 111: 7437-7522
  • 9 MacRae WD, Towers GHN. Biological activities of lignans. Phytochemistry 1984; 23: 1207-1220
  • 10 Ríos JL, Giner RM, Prieto JM. New findings on bioactivity of lignans. Stud Nat Prod Chem 2002; 26: 183-292
  • 11 Konoshima T, Takasaki M. Anti-tumor-promoting activities (cancer chemopreventive activities) of natural products. Stud Nat Prod Chem 2000; 24: 215-267
  • 12 Li XB, Yang ZX, Yang L, Chen XL, Zhang K, Yang Q, Wu YM, Liu SB, Tao KS, Zhao MG. Neuroprotective effects of flax lignan against NMDA-induced neurotoxicity in vitro . CNS Neurosci Ther 2012; 18: 927-933
  • 13 Jang EY, Park KA, Lee JR, Yang CH, Hwang M. Protective effect of sauchinone on methamphetamine-induced neurotoxicity in mice. J Pharmacol Sci 2012; 118: 531-536
  • 14 Kim YC. Neuroprotective phenolics in medicinal plants. Arch Pharm Res 2010; 33: 1611-1632
  • 15 Cui HS, Kim MR, Sok DE. Protection by petaslignolide A, a major neuroprotective compound in the butanol extract of Petasites japonicus leaves, against oxidative damage in the brains of mice challenged with kainic acid. J Agric Food Chem 2005; 53: 8526-8532
  • 16 Bustamante-García R, Lira-Rocha AS, Espejo-González O, Gómez-Martínez AE, Picazo O. Anxiolytic-like effects of a new 1-N substituted analog of melatonin in pinealectomized rats. Prog Neuropsychopharmacol Biol Psychiatry 2014; 51: 133-139
  • 17 Chen LJ, He XB, Zhang YP, Chen XP, Lai XR, Shao JJ, Shi Y, Zhou NM. Melatonin receptor type 1 signals to extracellular signal-regulated kinase 1 and 2 via Gi and Gs dually coupled pathways in HEK-293 cells. Biochemistry 2014; 53: 2827-2839
  • 18 Zlotos DP, Jockers R, Cecon E, Rivara S, Witt-Enderby PA. MT1 and MT2 melatonin receptors: ligands, models, oligomers, and therapeutic potential. J Med Chem 2014; 57: 3161-3185
  • 19 Lee DY, Song MC, Yoo KH, Bang MH, Chung IS, Kim SH, Kim DK, Kwon BM, Jeong TS, Park MH, Baek NI. Lignans from the fruits of Cornus kousa Burg. and their cytotoxic effects on human cancer cell lines. Arch Pharm Res 2007; 30: 402-407
  • 20 Deyama T, Ikawa T, Kitagawa S, Nishibe S. The constituents of Eucommia ulmoides Oliv. V: isolation of dihydroxydehydrodiconiferyl alcohol isomers and phenolic compounds. Chem Pharm Bull 1987; 35: 1785-1789
  • 21 Deyama T, Ikawa T, Kitagawa S, Nishibe S. The constituents of Eucommia ulmoides Oliv. III. Isolation and structure of a new lignan glycoside. Chem Pharm Bull 1986; 34: 523-527
  • 22 Kouno I, Yanagida Y, Shimono S, Shintomi M, Ito Y, Yang CS. Neolignans and a phenylpropanoid glucoside from Illicium difengpi . Phytochemistry 1993; 32: 1573-1577
  • 23 Matsumori N, Kaneno D, Murata M, Nakamura H, Tachibana K. Stereochemical determination of acyclic structures based on carbon-proton spin-coupling constants. A method of configuration analysis for natural products. J Org Chem 1999; 64: 866-876
  • 24 Li LY, Seeram NP. Further investigation into maple syrup yields 3 new lignans, a new phenylpropanoid, and 26 other phytochemicals. J Agric Food Chem 2011; 59: 7708-7716
  • 25 Li X, Cao W, Shen Y, Li N, Dong XP, Wang KJ, Cheng YX. Antioxidant compounds from Rosa laevigata fruits. Food Chem 2012; 130: 575-580
  • 26 Li YC, Kuo YH. Four new compounds, ficusal, ficusesquilignan A, B and ficusolide diacetate from the heartwood of Ficus microcarpa . Chem Pharm Bull 2000; 48: 1862-1865
  • 27 Houghton PJ. Lignans and neolignans from Buddleja davidii . Phytochemstry 1985; 24: 819-826
  • 28 Morreel K, Ralph J, Kim H, Lu F, Goeminne G, Ralph S, Messens E, Boerjan W. Profiling of oligolignols reveals monolignol coupling conditions in lignifying poplar xylem. Plant Physiol 2004; 136: 3537-3549
  • 29 Li XF, Jin HZ, Yang M, Chen G, Shen YH, Zhang WD. Chemical constituents of Rhododendron primulaeflorum . Chem Nat Compd 2010; 46: 106-108
  • 30 Jiao WH, Gao H, Zhao F, He F, Zhou GX, Yao XS. A new neolignan and a new sesterterpenoid from the stems of Picrasma quassioides Bennet. Chem Biodivers 2011; 8: 1163-1169
  • 31 Li SM, Lundquist K, Wallis AFA. Revised structure for a neolignan from Brucea javanica . Phytochemistry 1998; 49: 2125-2128
  • 32 Tan RX, Jakupovic J, Jia ZJ. Aromatic constituents from Vladimiria souliei . Planta Med 1990; 56: 475-477
  • 33 Xie LH, Akao T, Hamasaki K, Deyama T, Hattori M. Biotransformation of pinoresinol diglucoside to mammalian lignans by human intestinal microflora, and isolation of Enterococcus faecalis strain PDG-1 responsible for the transformation of (+)-pinoresinol to (+)-lariciresinol. Chem Pharm Bull 2003; 51: 508-515
  • 34 Duan YH, Li C, Dai Y, Yao XS. A new phenylpropanediol from Sarcandra glabra (Chloranthaceae). Plant Divers Resour 2012; 34: 208-210
  • 35 Marco I, Valhondo M, Martín-Fontecha M, Vázquez-Villa H, Río JD, Planas A, Sagredo O, Ramos JA, Torrecillas IR, Pardo L, Frechilla D, Benhamú B, López-Rodríguez ML. New serotonin 5-HT1A receptor agonists with neuroprotective effect against ischemic cell damage. J Med Chem 2011; 54: 7986-7999
  • 36 Jensen AA, Plath N, Pedersen MHF, Isberg V, Krall J, Wellendorph P, Stensbol TB, Gloriam DE, Krogsgaard-Larsen P, Frolund B. Design, synthesis, and pharmacological characterization of N- and O-substituted 5,6,7,8-tetrahydro-4H-isoxazolo[4,5-d]azepin-3-ol analogues: novel 5-HT2A/5-HT2C receptor agonists with procognitive properties. J Med Chem 2013; 56: 1211-1227
  • 37 Yang CY, Geng CA, Huang XY, Wang H, Xu HB, Liang WJ, Ma YB, Zhang XM, Zhou J, Chen JJ. Noreudesmane sesquiterpenoids from the leaves of Nicotiana tabacum . Fitoterapia 2014; 96: 81-87