Synthesis 2022; 54(12): 2839-2848
DOI: 10.1055/a-1758-6312
paper

Dual Role of the Arylating Agent in a Highly C(2)-Selective Pd-Catalysed Functionalisation of Pyrrole Derivatives

,
Milos Jovanovic
,
Predrag Jovanovic
,
Milena Simic
,
Gordana Tasic
,
Vladimir Savic
This research was funded by the Ministry of Education, Science and Technological Development, Republic of Serbia through Grant Agreement with the University of Belgrade-Faculty of Pharmacy No: 451-03-9/2021-14/200161.


Abstract

Pyrrole derivatives with C(2)-aryl substituents are an important and widespread class of heterocyclic compounds. Their synthesis can be accomplished using several strategic variants which usually entail either protection of the N–H functionality followed by the arylation, or a direct arylation. Although direct arylation is a preferable process due to a reduced number of synthetic steps, it often requires vigorous conditions or challenging reagents. To this synthetic repertoire, we add a novel method that is based on the dual role of the arylating agent. It serves as the nitrogen protecting group while also being involved in the arylation step. Deprotection as a final stage is carried out simultaneously utilising amines as reacting components. This approach ensures relatively mild conditions and exclusive C(2) selectivity yielding 2-arylpyrroles with the amide functionality. While aromatic amines are not suitable partners under studied conditions, most likely due to lower nucleophilicity, aliphatic amines, either primary or secondary, afford products in good yields.

Supporting Information



Publication History

Received: 28 December 2021

Accepted after revision: 02 February 2022

Accepted Manuscript online:
02 February 2022

Article published online:
29 March 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Rostami H, Shiri L. Appl. Organomet. Chem. 2021; 35: e6209
    • 1b Hunjan MK, Panday S, Gupta A, Bhaumik J, Das P, Laha JK. Chem. Rec. 2021; 21: 715
    • 1c Sarosh I, Hina R, Rabiya JA, Ramsha JA, Asma M, Mark GM. Curr. Org. Chem. 2020; 24: 1196
    • 1d Apetrei R.-M, Camurlu P. J. Electrochem. Soc. 2020; 167: 037557
    • 1e Li Petri G, Spanò V, Spatola R, Holl R, Raimondi MV, Barraja P, Montalbano A. Eur. J. Med. Chem. 2020; 208: 112783
    • 1f Leonardi M, Estévez V, Villacampa M, Menéndez JC. Synthesis 2019; 51: 816
    • 1g Ahmad S, Alam O, Naim MJ, Shaquiquzzaman M, Alam MM, Iqbal M. Eur. J. Med. Chem. 2018; 157: 527
    • 1h Estévez V, Villacampa M, Menéndez JC. Chem. Soc. Rev. 2014; 43: 4633
    • 2a Peng S, He Q, Vargas-Zúñiga GI, Qin L, Hwang I, Kim SK, Heo NJ, Lee C.-H, Dutta R, Sessler JL. Chem. Soc. Rev. 2020; 49: 865
    • 2b Apetrei R.-M, Camurlu P. J. Electrochem. Soc. 2020; 167: 037557
    • 2c Li Petri G, Spanò V, Spatola R, Holl R, Raimondi MV, Barraja P, Montalbano A. Eur. J. Med. Chem. 2020; 208: 112783
    • 2d Grotkopp O, Mayer B, Müller TJ. J. Front. Chem. 2018; 6: 579
    • 2e Mosaad SM, Samar SF. Mini-Rev. Org. Chem. 2014; 11: 477
    • 2f Bhardwaj V, Gumber D, Abbot V, Dhiman S, Sharma P. RSC Adv. 2015; 5: 15233
    • 3a Gjorgjieva M, Masic LP, Kikelj D. Mini-Rev. Med. Chem. 2018; 18: 1640
    • 3b Yang F, Nickols NG, Li BC, Marinov GK, Said JW, Dervan PB. Proc. Natl. Acad. Sci. U.S.A. 2013; 110: 1863
    • 3c Battilocchio C, Poce G, Alfonso S, Porretta GC, Consalvi S, Sautebin L, Pace S, Rossi A, Ghelardini C, Di Cesare Mannelli L, Schenone S, Giordani A, Di Francesco L, Patrignani P, Biava M. Bioorg. Med. Chem. 2013; 21: 3695
    • 3d Scott MK, Martin GE, DiStefano DL, Fedde CL, Kukla MJ, Barrett DL, Baldy WJ, Elgin RJ, Kesslick JM, Mathiasen JR. J. Med. Chem. 1992; 35: 552
  • 4 Baumann M, Baxendale IR, Ley SV, Nikbin N. Beilstein J. Org. Chem. 2011; 7: 442
    • 5a Singh N, Singh S, Kohli S, Singh A, Asiki H, Rathee G, Chandra R, Anderson EA. Org. Chem. Front. 2021; 8: 5550
    • 5b Senge MO, Sergeeva NN, Hale KJ. Chem. Soc. Rev. 2021; 50: 4730
    • 6a Bulumulla C, Gunawardhana R, Gamage PL, Miller JT, Kularatne RN, Biewer MC, Stefan MC. ACS Appl. Mater. Interfaces 2020; 12: 32209
    • 6b Maruthapandi M, Gedanken A. Polymers 2019; 11: 1240
    • 6c Sahu H, Gupta S, Gaur P, Panda AN. Phys. Chem. Chem. Phys. 2015; 17: 20647
    • 6d Li H, Yang L, Tang R, Hou Y, Yang Y, Wang H, Han H, Qin J, Li Q, Li Z. Dyes Pigm. 2013; 99: 863
    • 6e Gursoy SS, Uygun A, Tilki T. J. Macromol. Sci. A 2010; 47: 681
    • 7a Philkhana SC, Badmus FO, Reis IC. D, Kartika R. Synthesis 2021; 53: 1531
    • 7b Duc DX. Curr. Org. Chem. 2020; 24: 622
    • 7c Sarosh I, Hina R, Rabiya JA, Ramsha JA, Asma M, Mark GM. Curr. Org. Chem. 2020; 24: 1196
    • 7d Estévez V, Villacampa M, Menéndez JC. Chem. Soc. Rev. 2010; 39: 4402
    • 8a Romagnoli R, Oliva P, Salvador MK, Manfredini S, Padroni C, Brancale A, Ferla S, Hamel E, Ronca R, Maccarinelli F, Rruga F, Mariotto E, Viola G, Bortolozzi R. Eur. J. Med. Chem. 2021; 214: 113229
    • 8b Cheng Y, Klein CK, Tonks IA. Chem. Sci. 2020; 11: 10236
    • 8c Figliola C, Greening SM, Lamont C, Groves BR, Thompson A. Can. J. Chem. 2018; 96: 534
    • 8d Menichincheri M, Albanese C, Alli C, Ballinari D, Bargiotti A, Caldarelli M, Ciavolella A, Cirla A, Colombo M, Colotta F, Croci V, D’Alessio R, D’Anello M, Ermoli A, Fiorentini F, Forte B, Galvani A, Giordano P, Isacchi A, Martina K, Molinari A, Moll JK, Montagnoli A, Orsini P, Orzi F, Pesenti E, Pillan A, Roletto F, Scolaro A, Tatò M, Tibolla M, Valsasina B, Varasi M, Vianello P, Volpi D, Santocanale C, Vanotti E. J. Med. Chem. 2010; 53: 7296
    • 8e Zhao Y, Li Y, Ou X, Zhang P, Huang Z, Bi F, Huang R, Wang Q. J. Agric. Food Chem. 2008; 56: 10176
    • 9a Zarganes-Tzitzikas T, Neochoritis CG, Dömling A. ACS Med. Chem. Lett. 2019; 10: 389
    • 9b Hoyos P, Pace V, Alcántara AR. Catalysts 2019; 9: 260
    • 11a Hall A, Atkinson S, Brown SH, Chessell IP, Chowdhury A, Clayton NM, Coleman T, Giblin GM. P, Gleave RJ, Hammond B, Healy MP, Johnson MR, Michel AD, Naylor A, Novelli R, Spalding DJ, Tang SP. Bioorg. Med. Chem. Lett. 2006; 16: 3657
    • 11b Qian X, Liang G.-B, Feng D, Fisher M, Crumley T, Rattray S, Dulski PM, Gurnett A, Leavitt PS, Liberator PA, Misura AS, Samaras S, Tamas T, Schmatz DM, Wyvratt M, Biftu T. Bioorg. Med. Chem. Lett. 2006; 16: 2817
    • 11c Goel A, Agarwal N, Singh FV, Sharon A, Tiwari P, Dixit M, Pratap R, Srivastava AK, Maulik PR, Ram VJ. Bioorg. Med. Chem. Lett. 2004; 14: 1089
    • 12a Burghart A, Kim H, Welch MB, Thoresen LH, Reibenspies J, Burgess K, Bergström F, Johansson LB.-Å. J. Org. Chem. 1999; 64: 7813
    • 12b Bonnett R, Motevalli M, Siu J. Tetrahedron 2004; 60: 8913
    • 12c Dilrukshi Herath HM. P, Song H, Preston S, Jabbar A, Wang T, McGee SL, Hofmann A, Garcia-Bustos J, Chang BC. H, Koehler AV, Liu Y, Ma Q, Zhang P, Zhao Q, Wang Q, Gasser RB. Int. J. Parasitol. Drugs Drug. Resist. 2018; 8: 379
    • 13a Rieth RD, Mankad NP, Calimano E, Sadighi JP. Org. Lett. 2004; 6: 3981
    • 13b Sezen B, Sames D. J. Am. Chem. Soc. 2003; 125: 5274
    • 13c Filippini L, Gusmeroli M, Riva R. Tetrahedron Lett. 1992; 33: 1755
    • 14a Laha JK, Bhimpuria RA, Prajapati DV, Dayal N, Sharma S. Chem. Commun. 2016; 52: 4329
    • 14b Laha JK, Sharma S, Bhimpuria RA, Dayal N, Dubey G, Bharatam PV. New J. Chem. 2017; 41: 8791
    • 14c Honraedt A, Raux M.-A, Grognec EL, Jacquemin D, Felpin F.-X. Chem. Commun. 2014; 50: 5236
    • 14d Nadres ET, Lazareva A, Daugulis O. J. Org. Chem. 2011; 76: 471
    • 14e Vakuliuk O, Gryko D. Eur. J. Org. Chem. 2011; 15: 2854
    • 14f Vakuliuk O, Koszarna B, Gryko DT. Adv. Synth. Catal. 2011; 353: 925
    • 14g Roy D, Mom S, Beaupérin M, Doucet H, Hierso J.-C. Angew. Chem. Int. Ed. 2010; 49: 6650
    • 14h Gryko DT, Vakuliuk O, Gryko D, Koszarna B. J. Org. Chem. 2009; 74: 9517
    • 14i Yanagisawa S, Sudo T, Noyori R, Itami K. J. Am. Chem. Soc. 2006; 128: 11748
    • 15a Jafarpour F, Rahiminejadan S, Hazrati H. J. Org. Chem. 2010; 75: 3109
    • 15b Wang X, Gribkov DV, Sames D. J. Org. Chem. 2007; 72: 1476
    • 15c Bellina F, Cauteruccio S, Rossi R. Eur. J. Org. Chem. 2006; 6: 1379
    • 15d Bheeter CB, Bera JK, Doucet H. Tetrahedron Lett. 2012; 53: 509
  • 16 Deprez NR, Kalyani D, Krause A, Sanford MS. J. Am. Chem. Soc. 2006; 128: 4972
  • 17 Wang X, Lane BS, Sames D. J. Am. Chem. Soc. 2005; 127: 4996
  • 18 Ackermann L, Lygin AV. Org. Lett. 2011; 13: 3332
  • 19 Qian YY, Wong KL, Zhang MW, Kwok TY, To CT, Chan KS. Tetrahedron Lett. 2012; 53: 1571
  • 20 Wen J, Qin S, Ma L.-F, Dong L, Zhang J, Liu S.-S, Duan Y.-S, Chen S.-Y, Hu C.-W, Yu X.-Q. Org. Lett. 2010; 12: 2694
  • 21 Yang S.-D, Sun C, Fang Z, Li B.-J, Li Y.-Z, Shi Z.-J. Angew. Chem. Int. Ed. 2008; 47: 1473
  • 22 Wen J, Zhang R.-Y, Chen S.-Y, Zhang J, Yu X.-Q. J. Org. Chem. 2012; 77: 766
  • 23 O’Brien HM, Manzotti M, Abrams RD, Elorriaga D, Sparkes HA, Davis SA, Bedford RB. Nat. Catal. 2018; 1: 429
  • 24 Shinde MH, Ramana CV. Chem. Eur. J. 2020; 26: 17171
  • 25 McDaniel KA, Jui NT. Org. Lett. 2021; 23: 5576
    • 26a Grigg R, Sridharan V, Stevenson P, Sukirthalingam S, Worakun T. Tetrahedron 1990; 11: 4003
    • 26b Simic M, Tasic G, Jovanovic P, Petkovic M, Savic V. Org. Biomol. Chem. 2018; 16: 2125