Synthesis 2023; 55(15): 2397-2405
DOI: 10.1055/a-1989-2633
paper
Special Issue dedicated to Prof. David A. Evans

Desymmetrization of a Propane-1,3-diol to Introduce the Quaternary Chiral Center of an AMG 176 Drug Substance Intermediate

Padmini K. Ananthoji
a   Process Development, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142, USA
,
Athimoolam Arunachalampillai
b   Syngene Amgen Research & Development Center, Biocon Park, Plot No. 2 & 3, Bommasandra IV Phase, Jigni Link Road, Bangalore 560099, India
,
Matthew G. Beaver
a   Process Development, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142, USA
,
Yuan-Qing Fang
a   Process Development, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142, USA
,
Simon J. Hedley
c   Process Development, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, USA
,
Brian S. Lucas
d   Department of Therapeutic Discovery, Amgen Inc., 1120 Veterans Boulevard, South San Francisco, California 94080, USA
,
Jason S. Tedrow
c   Process Development, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, USA
,
Margaret M. Faul
c   Process Development, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, USA
› Author Affiliations


This article is dedicated to Professor David A. Evans, a friend and mentor, for his outstanding contributions to the organic chemistry community, his dedication to the education of an outstanding generation of undergraduate students, graduate students and post docs, and his excellence as a teacher to the broader organic chemistry community. Professor Evans will be remembered fondly and deeply missed.

Abstract

A chiral Cu(II)-PyBOX complex was prepared and utilized to accomplish desymmetrization of a 1,3-diol en route to AMG 176. An expedient synthesis of the racemic 1,3-diol is described, in addition to efforts for rapid optimization and subsequent kilogram-scale execution of the desymmetrization process to generate material for pre-clinical activities. An overview of the kilogram-scale synthesis of the Cu(II)-PyBOX complex is provided.

Supporting Information



Publication History

Received: 20 November 2022

Accepted: 29 November 2022

Accepted Manuscript online:
29 November 2022

Article published online:
10 January 2023

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Current address: Snapdragon Chemistry, 360 2nd Ave, Waltham, MA 02451.
  • 2 Current address: Quotient Sciences, Taylor Drive, Alnwick, Northumberland, UK, NE66 2DH.
  • 3 Current address: Skyhawk Therapeutics, 35 Gatehouse Drive, Waltham, MA 02451.
  • 4 Current address: Sanofi, Inc., 350 Water Street, Cambridge, MA 02141.
    • 5a Caenepeel S, Brown PS, Belmontes B, Moody G, Keegan KS, Chui D, Whittington DA, Huang X, Poppe L, Cheng AC, Cardozo M, Houze J, Li Y, Lucas B, Paras NA, Wang X, Taygerly JP, Vimolratana M, Zancanella M, Zhu L, Cajulis E, Osgood T, Sun J, Damon L, Egan RK, Greninger P, McClanaghan JD, Gond J, Moujalled D, Pomilio G, Beltran P, Benes CH, Roberts AW, Huang DC, Wei A, Canon J, Coxon A, Hughes PE. Cancer Discovery 2018; 8: 1582
    • 5b Rescourio G, Gonzalez AZ, Jabri S, Belmontes B, Moody G, Whittington D, Huang X, Caenepeel S, Cardoza M, Cheng AC, Chow D, Dou H, Jones A, Kelly RC, Li Y, Lizarzaburu M, Lo M.-C, Mallari R, Meleza C, Rew Y, Simonovich S, Sun D, Turcotte S, Yan X, Wong SG, Yanez E, Zancanella M, Houze J, Medina JC, Hughes PE, Brown SP. J. Med. Chem. 2019; 62: 10258
    • 5c Yi X, Sarkar A, Kismalli G, Aslan B, Ayres M, Iles LR, Keating MJ, Wierda WG, Long JP, Bertilaccio MT. S, Gandhi V. Clin. Cancer Res. 2020; 26: 3856
    • 6a Beaver MG, Zhang E.-x, Liu Z.-q, Zheng S.-y, Wang B, Lu J.-p, Tao J, Gonzalez M, Jones S, Tedrow JS. Org. Process Res. Dev. 2020; 24: 2139
    • 6b St-Pierre G, Cherney AH, Chen W, Dong X, Dornan PK, Griffin DJ, Houk KN, Lin JB, Osgood S, Elipe MV. S, Timmons HC, Xie Y, Tedrow JS, Thiel OR, Smith AG. Org. Process Res. Dev. 2021; 25: 442
    • 6c Tom JK, Achmatowicz MM, Beaver MG, Colyer J, Ericson A, Hwang T.-L, Jiao N, Langille NF, Liu M, Lovette MA, Sangodkar RP, Kumar SS, Spada S, Perera D, Sheeran J, Campbell K, Doherty T, Ford DD, Fang Y.-Q, Rossi E, Santoni G, Cui S, Walker SD. Org. Process Res. Dev. 2021; 25: 486
    • 6d Beaver MG, Caille S, Farrell RP, Rötheli AR, Smith AG, Tedrow JS, Thiel OR. Synlett 2021; 32: 457
  • 7 Evans DA, Carter PH, Carreira EM, Charette AB, Prunet JA, Lautens M. J. Am. Chem. Soc. 1999; 121: 7540
  • 8 Evans DA, Trotter BW, Coleman PJ, Côté B, Dias LC, Rajapakse HA, Tyler AN. Tetrahedron 1999; 55: 8671
  • 9 Evans DA, Fitch DM, Smith TE, Cee VJ. J. Am. Chem. Soc. 2000; 122: 10033
    • 10a Desimoni G, Faita G, Jørgensen KA. Chem. Rev. 2006; 106: 3561
    • 10b Johnson JS, Evans DA. Acc. Chem. Res. 2000; 33: 325
    • 10c Connon R, Roche B, Rokade BV, Guiry PJ. Chem. Rev. 2021; 121: 6373

      For reviews on desymmetrization of diols, see:
    • 11a Muller CE, Schreiner PR. Angew. Chem. Int. Ed. 2011; 50: 6012
    • 11b Enríquez-García A, Kundig EP. Chem. Soc. Rev. 2012; 41: 7803
    • 11c Díaz-de-Villegas MD, Gálvaz JA, Badorrey R, Lopez-Ram-de-Víu MP. Chem. Eur. J. 2012; 18: 13920

      Selected examples of desymmetrization of meso-1,2-diols, see:
    • 12a Sun X, Worthy AD, Tan KL. Angew. Chem. Int. Ed. 2011; 50: 8167
    • 12b Manville N, Alite H, Haeffner F, Hoveyda AH, Snapper ML. Nat. Chem. 2013; 5: 768
    • 12c Roux C, Candy M, Pons J.-M, Chuzel O, Bressy C. Angew. Chem. Int. Ed. 2014; 53: 785
    • 13a Fadel A, Arzel P. Tetrahedron: Asymmetry 1997; 8: 283
    • 13b Morgan B, Dodds DR, Zaks A, Andrews DR, Klesse R. J. Org. Chem. 1997; 62: 7736
    • 13c Akai S, Naka T, Takebe Y, Kita Y. Chem. Pharm. Bull. 2000; 48: 1519
    • 13d Akai S, Tsujino T, Akiyama E, Tanimoto K, Naka T, Kita K. J. Org. Chem. 2004; 69: 2478
    • 14a Trost BM, Mino T. J. Am. Chem. Soc. 2003; 125: 2410
    • 14b Harada T, Shiraishi K. Synlett 2005; 1999
    • 14c Honjo T, Nakao M, Sano S, Shiro M, Yamaguchi K, Sei Y, Nagao Y. Org. Lett. 2007; 9: 509
    • 14d Jung B, Hong MS, Kang SH. Angew. Chem. Int. Ed. 2007; 46: 2616
    • 14e Trost BM, Malhotra S, Mino T, Rajapaksa NS. Chem. Eur. J. 2008; 14: 7648
    • 14f You YS, Kim TW, Kang SH. Chem. Commun. 2013; 49: 9669
    • 14g Yamamoto K, Ishimaru S, Oyama T, Tanigawa S, Kuriyama M, Onomura O. Org. Process Res. Dev. 2019; 23: 660
    • 14h Ouellette ET, Lougee MG, Bucknam AR, Endres PJ, Kim JY, Lynch EJ, Sisko EJ, Sculimbrene BR. J. Org. Chem. 2021; 86: 7450
    • 14i Estrada CD, Ang HT, Vetter K.-M, Ponich AA, Hall DG. J. Am. Chem. Soc. 2021; 143: 4162
    • 15a Takeshi O, Hiromoto T, Dai T, Tomohumi S. Chem. Lett. 2002; 31: 26
    • 15b Lewis CA, Sculimbrene BR, Xu Y, Miller SJ. Org. Lett. 2005; 7: 3021
    • 15c You Z, Hoveyda AH, Snapper ML. Angew. Chem. Int. Ed. 2009; 48: 547
    • 15d Sakakura A, Umemura S, Ishihara K. Adv. Synth. Catal. 2011; 353: 1938
    • 15e Aida H, Mori K, Yamaguchi Y, Mizuta S, Moriyama T, Yamamoto I, Fujimoto T. Org. Lett. 2012; 14: 812
    • 15f Chen Z, Sun J. Angew. Chem. Int. Ed. 2013; 52: 13593
    • 15g Meng S.-S, Liang Y, Cao K.-S, Zou L, Lin X.-B, Yang H, Houk KN, Zheng W.-H. J. Am. Chem. Soc. 2014; 136: 12249
    • 15h Li B.-S, Wang Y, Proctor RS. J, Jin Z, Chi YR. Chem. Commun. 2016; 52: 8313
    • 15i Mandai H, Ashihara K, Mitsudo K, Suga S. Chem. Lett. 2018; 47: 1360
  • 16 Hong MS, Kim TW, Jung B, Kang SH. Chem. Eur. J. 2008; 14: 3290
  • 17 Lee JY, You YS, Kang SH. J. Am. Chem. Soc. 2011; 133: 1772
  • 18 Tsuda Y, Kuriyama M, Onomura O. Chem. Eur. J. 2012; 18: 2481
  • 19 Gan P, Pitzen J, Qu P, Snyder SA. J. Am. Chem. Soc. 2018; 140: 919
  • 20 Evans DA, Kozlowski MC, Murry JA, Burgey CS, Campos KR, Connell BT, Staples RJ. J. Am. Chem. Soc. 1999; 121: 669
  • 21 An order of magnitude increase in electrophilicity for para-substituted trans-β-nitrostyrenes was observed when comparing bromo- and nitro-functionalization: Zenz I, Mayr H. J. Org. Chem. 2011; 76: 9370
  • 22 The onset melting point of an enriched sample (>96% ee) was 146 °C, whereas the racemic onset melting point was 124 °C. A 10 mg sample with 79.9% ee in isopropanol afforded 3c as a crystalline solid with 97% ee and a supernatant of 61% ee after 18 h at ambient temperature.
  • 23 SiliaBond® Amine R52030B.
  • 24 This general approach from pyridine-2,6-dicarboximidates was first reported by Müller and Boléa for the synthesis of related PyBOX ligands: Müller P, Boléa C. Helv. Chim. Acta 2001; 84: 1093
  • 25 Brown SP, Li Y, Lizarzaburu ME, Lucas BS, Paras NA, Taygerly J, Vimolratana M, Wang X, Yu M, Zancanella M, Zhu L, Gonzalez BuenrostroA, Li Z. WO 2016 033 486, 2016
  • 26 Spectroscopic data were compared to those previously reported in the literature: Valeur E, Bradley M. Tetrahedron 2007; 63: 8855