Synthesis 2023; 55(21): 3662-3669
DOI: 10.1055/a-2053-9558
special topic
C–H Bond Functionalization of Heterocycles

On the Reaction Mechanism of the Selective C(sp3)–H Functionalization of N-Benzylpiperidines Mediated by TEMPO Oxoammonium Cation

Julio Romero-Ibañez
a   Centro de Investigación de la Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla (BUAP), 14 Sur Esq. San Claudio, Col. San Manuel, 72570 Puebla, México
,
Jacinto Sandoval-Lira
b   Departamento de Ingeniería Ambiental, TecNM, Instituto Tecnológico Superior de San Martín Texmelucan, Camino a la Barranca de Pesos, C.P. 74120 San Martín Texmelucan, Puebla, México
,
Silvano Cruz-Gregorio
a   Centro de Investigación de la Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla (BUAP), 14 Sur Esq. San Claudio, Col. San Manuel, 72570 Puebla, México
,
Julio M. Hernández-Pérez
a   Centro de Investigación de la Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla (BUAP), 14 Sur Esq. San Claudio, Col. San Manuel, 72570 Puebla, México
,
Leticia Quintero
a   Centro de Investigación de la Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla (BUAP), 14 Sur Esq. San Claudio, Col. San Manuel, 72570 Puebla, México
,
a   Centro de Investigación de la Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla (BUAP), 14 Sur Esq. San Claudio, Col. San Manuel, 72570 Puebla, México
› Institutsangaben
Financial support was provided by Consejo Nacional de Ciencia y Tecnología (CONACYT, Grant nos. A1-S-21450 and CB 255891) and partial support from Vicerrectoría de Investigación y Estudios de Posgrado, Benemérita Universidad Autónoma de Puebla (BUAP-VIEP, 100501044-VIEP2021).


Abstract

The selective and dual C(sp3)–H oxidation of N-heterocycles to their corresponding 3-alkoxyamino lactams mediated by TEMPO oxoammonium cation (TEMPO+) is turning into a convenient nonmetallic strategy for the rapid functionalization of piperidines and pyrrolidines to bioactive alkaloids. Mechanistic proposal suggests that TEMPO+ prefers to oxidize the endocyclic C–Hα bond of either N-substituted piperidines or pyrrolidines to their corresponding endocyclic iminium intermediates, which are transformed into enamine intermediates, and then trapped by oxoammonium cation. Although the product formation seems to be in concordance with this mechanistic rationale, neither experimental evidence nor theoretical calculations have been reported. Accordingly, the current investigation provides computational findings explaining that the origin of the selective C–Hα oxidation can be attributed to an unprecedented C–H···π interaction between two hydrogen atoms of TEMPO+ with the aromatic ring of the piperidine benzyl group. To prove the existence of the enamine intermediate, we developed an unprecedented transition-metal-free tetra C–H oxidation of two N-benzyl-4-methylenepiperidines. Accordingly, the existence of the elusive enamine intermediate was attained by generating a transitory dienamine intermediate, which was trapped by TEMPO+ and NaClO to give the corresponding 4-(aminooxymethyl)-3,4-epoxy-2-piperidone.

Supporting Information



Publikationsverlauf

Eingereicht: 08. Februar 2023

Angenommen nach Revision: 14. März 2023

Accepted Manuscript online:
14. März 2023

Artikel online veröffentlicht:
18. April 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Anelli PL, Biffi C, Montanari F, Quici S. J. Org. Chem. 1987; 52: 2559
  • 2 Mercadante MA, Kelly CB, Bobbitt JM, Tilley LJ, Leadbeater NE. Nat. Protoc. 2013; 8: 666
  • 3 Nagasawa S, Sasano Y, Iwabuchi Y. Heterocycles 2022; 105: 61
  • 4 Romero-Ibañez J, Fuentes L, Sartillo-Piscil F. Synlett 2021; 32: 1385
    • 5a Osorio-Nieto U, Chamorro-Arenas D, Quintero L, Höpfl H, Sartillo-Piscil F. J. Org. Chem. 2016; 81: 8625
    • 5b Romero-Ibañez J, Cruz-Gregorio S, Sandoval-Lira J, Hernández-Pérez JM, Quintero L, Sartillo-Piscil F. Angew. Chem. Int. Ed. 2019; 58: 8867
    • 5c Romero-Ibañez J, Cruz-Gregorio S, Quintero L, Sartillo-Piscil F. Synthesis 2018; 50: 2878
  • 6 Chamorro-Arenas D, Nolasco-Hernández AA, Fuentes L, Quintero L, Sartillo-Piscil F. Chem. Eur. J. 2020; 26: 4671
    • 7a Semmelhack MF, Schmid CR, Cortés DA. Tetrahedron Lett. 1986; 27: 1119
    • 7b De Nooy AE. J, Besemer AC, Van Bekkum H. Tetrahedron 1995; 51: 8023
    • 7c Bailey WF, Bobbitt JM, Wiberg KB. J. Org. Chem. 2007; 72: 4504
    • 7d Lambert KM, Kelly CB, Milligan JA, Tilley LJ, Reynolds RP, McGuire KP, Anzalone L, Del Sesto KE, Walsh S. J. Chem. Educ. 2022; 99: 3249
    • 8a Lambert KM, Bobbitt JM, Eldirany SA, Wiberg KB, Bailey WF. Org. Lett. 2014; 16: 6484
    • 8b Hamlin TA, Kelly CB, Ovian JM, Wiles RJ, Tilley LJ, Leadbeater NE. J. Org. Chem. 2015; 80: 8150
  • 9 Chamorro-Arenas D, Osorio-Nieto U, Quintero L, Hernández-García L, Sartillo-Piscil F. J. Org. Chem. 2018; 83: 15333
  • 10 Bobbitt JM, Bartelson AL, Bailey WF, Hamlin TA, Kelly CB. J. Org. Chem. 2014; 79: 1055
  • 11 Luo Y.-R. Comprehensive Handbook of Chemical Bond Energies. CRC Press; Boca Raton, FL: 2007
  • 12 We found that the natural charge for the exo hydrogen is 0.224 and 0.219 for the endo hydrogen from the NBO analysis in 1a, calculated at the M06/cc-pVDZ theory level.
    • 13a Nishio M. Phys. Chem. Chem. Phys. 2011; 13: 13873
    • 13b Takashi O, Kohno Y, Nishio M. Chem. Rev. 2010; 110: 6049
    • 13c Nishio M, Hirota M. Tetrahedron 1989; 45: 7201

      Although the putative enamine intermediate has been detected spectroscopically, it has not been isolated yet.
    • 14a He Y, Zheng Z, Liu Y, Qiao J, Zhang X, Fan X. Chem. Commun. 2019; 55: 12372
    • 14b He Y, Yang J, Zhang X, Fan X. Org. Chem. Front. 2021; 8: 5118

    • Additionally, enamine C has been trapped via a hetero-Diels–Alder reaction and isolated as its dimer.
    • 14c Chen W, Kang Y, Wilde RG, Seidel D. Angew. Chem. Int. Ed. 2014; 53: 5179
    • 14d Ma L, Paul A, Breugst M, Seidel D. Chem. Eur. J. 2016; 22: 18179
    • 15a Segre A, Viterbo R, Parisi G. J. Am. Chem. Soc. 1957; 79: 3503
    • 15b Vignola N, List B. J. Am. Chem. Soc. 2004; 126: 450
    • 15c Stork G, Brizzolara A, Landesman H, Szmuskovicz J, Terrell R. J. Am. Chem. Soc. 1963; 85: 207
    • 16a Bertelsen S, Marigo M, Brandes S, Dinér P, Jørgensen KA. J. Am. Chem. Soc. 2006; 128: 12973
    • 16b Ramachary DB, Reddy YV. Eur. J. Org. Chem. 2012; 865
    • 16c Stiller J, Marqués-López E, Herrera RP, Fröhlich R, Strohmann C, Christmann M. Org. Lett. 2011; 13: 70
  • 17 Fuentes L, Osorio U, Quintero L, Höpfl H, Vázquez-Cabrera N, Sartillo-Piscil F. J. Org. Chem. 2012; 77: 5515
  • 18 Zhao Y, Truhlar DG. Theor. Chem. Acc. 2008; 120: 215
  • 20 Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA. Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ. Gaussian 09, Revision B.01 . Gaussian, Inc; Wallingford, CT: 2010
  • 21 Weinhold F, Landis CR. Discovering Chemistry with Natural Bond Orbitals . John Wiley & Sons, Inc; Hoboken: 2012
  • 22 Glendening ED, Reed AE, Carpenter JE, Weinhold F. NBO Version 3.1 . University of Wisconsin; Madison, WI: 2001
  • 23 Nardi D, Motta G, Testa R, Graziani G. US Patent 4482561, 1984