Synthesis 2024; 56(04): 639-649
DOI: 10.1055/a-2119-5236
special topic
Synthetic Development of Key Intermediates and Active Pharmaceutical Ingredients (APIs)

Palladium-Loading Ceramic Catalytic Membrane Reactors for Mizoroki–Heck Reaction

Fei Zhang
a   Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. of China
,
Yong Zhou
a   Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. of China
,
Shuangqiang Wang
b   State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. of China
,
Yao Zhao
a   Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. of China
,
Xiaojin Wu
a   Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. of China
b   State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. of China
,
Rizhi Chen
b   State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. of China
› Author Affiliations
We gratefully acknowledge funding from the National Key R & D Program (2022YFC3900300 and 2022YFB3805504), the National Natural Science Foundation of China (21602104 and 22178165); Natural Science Foundation of Jiangsu Province, China (BK 20160986); Starting Funding of Research from Nanjing Tech University (3983500176); funding from State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University (KL21-09); funding from Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University (KJS2012).


Abstract

The general and efficient palladium-loading ceramic catalytic membrane reactor has been first reported to apply in the Mizoroki–Heck reaction. The as-fabricated catalytic membrane Pd-KH792-CM has shown high activity and selectivity in the flow-through Mizoroki–Heck reactions. The consistently high activity of the catalytic membrane in the five cycles has also proved its good stability and recyclability. Synthesis of drug molecules has further demonstrated that the catalytic membrane protocol is a powerful and comprehensive alternative to the traditional Mizoroki–Heck cross-coupling.

Supporting Information



Publication History

Received: 21 May 2023

Accepted after revision: 28 June 2023

Accepted Manuscript online:
28 June 2023

Article published online:
22 August 2023

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Beletskaya IP, Cheprakov AV. Chem. Rev. 2000; 100: 3009
    • 1b Magano J, Dunetz JR. Chem. Rev. 2011; 111: 2177
    • 1c Mc Cartney D, Guiry PJ. Chem. Soc. Rev. 2011; 40: 5122
    • 1d Meng G, Szostak M. Angew. Chem. Int. Ed. 2015; 54: 14518
    • 1e Biffis A, Centomo P, Del Zotto A, Zecca M. Chem. Rev. 2018; 118: 2249
    • 2a Astruc D, Lu F, Aranzaes JR. Angew. Chem. Int. Ed. 2005; 44: 7852
    • 2b Beaumont SK. J. Chem. Technol. Biotechnol. 2012; 87: 595
    • 2c McCarthy S, Braddock DC, Wilton-Ely JD. E. T. Coord. Chem. Rev. 2021; 442: 213925
    • 2d Jose DE, Kanchana US, Mathew TV. J. Nanopart. Res. 2022; 24: 1
    • 3a Ghosh Chaudhuri R, Paria S. Chem. Rev. 2012; 112: 2373
    • 3b Almaradhi MA, Hassan HM. A, Alhumaimess MS. Chin. J. Chem. Eng. 2022; 51: 75
    • 3c Çalışkan M, Baran T. Cellulose 2022; 29: 7789
    • 3d Keskin S, Citlakoglu M, Akbayrak S, Kaya S. J. Colloid Interface Sci. 2022; 623: 574
    • 4a Gholinejad M, Naghshbandi Z, Nájera C. ChemCatChem 2019; 11: 1792
    • 4b Pu C, Li R.-D, Chang G.-G, Chen M.-J, Yao Y, Li J.-S, Zhao B, Wu L, Zhang Y.-X, Yang X.-Y. Sci. China Chem. 2022; 65: 1661
    • 4c Rao RG, Blume R, Greiner MT, Liu P, Hansen TW, Dreyer KS, Hibbitts DD, Tessonnier J.-P. ACS Catal. 2022; 12: 7344
    • 4d Shao X, Miao X, Tian F, Bai M, Guo X, Wang W, Zhao Z, Ji X, Li M, Deng F. J. Energy Chem. 2023; 76: 249
    • 5a Lu B.-B, Chen X.-Y, Feng C.-J, Chang J, Ye F. ACS Appl. Nano Mater. 2021; 4: 2278
    • 5b Gao ML, Li L, Sun ZX, Li JR, Jiang HL. Angew. Chem. Int. Ed. 2022; 61: e202211216
    • 5c Li Y, Zhong H, Jin Y, Guan B, Yue J, Zhao R, Huang Y. ACS Appl. Mater. Interfaces 2022; 14: 40408
    • 5d Xia Y, Li J, Li M, Ren Y, Jiang H, Wu W. Green Chem. 2022; 24: 9203
    • 6a Romero-Muniz I, Mavrandonakis A, Albacete P, Vega A, Briois V, Zamora F, Platero-Prats AE. Angew. Chem. Int. Ed. 2020; 59: 13013
    • 6b Cata L, Terenti N, Cociug C, Hadade ND, Grosu I, Bucur C, Cojocaru B, Parvulescu VI, Mazur M, Cejka J. ACS Appl. Mater. Interfaces 2022; 14: 10428
    • 6c Krishnaraj C, Jena HS, Rawat KS, Schmidt J, Leus K, Van Speybroeck V, Van Der Voort P. ACS Appl. Mater. Interfaces 2022; 14: 50923
    • 6d Nouruzi N, Dinari M, Gholipour B, Afshari M, Rostamnia S. ACS Appl. Nano Mater. 2022; 5: 6241
    • 7a Wang Y, Liu Y, Li J, Liu Y, Zhang W, Yang M, Jian Y, Zuo P, Gao Z. Ind. Eng. Chem. Res. 2020; 59: 11241
    • 7b Deng M, Ma J, Liu Y, Pang Y, Yang C, Cao T, Yuan Z, Yao M, Liu F, Wang X. Fuel 2023; 333: 126466
  • 8 Dohendou M, Pakzad K, Nezafat Z, Nasrollahzadeh M, Dekamin MG. Int. J. Biol. Macromol. 2021; 192: 771
    • 9a Peng M, Liu Y, Jiang H, Chen R, Xing W. RSC Adv. 2016; 6: 2087
    • 9b Choi GH, Rhee do K, Park AR, Oh MJ, Hong S, Richardson JJ, Guo J, Caruso F, Yoo PJ. ACS Appl. Mater. Interfaces 2016; 8: 3250
    • 9c Chen Y, Fan S, Chen J, Deng L, Xiao Z. ACS Appl. Mater. Interfaces 2022; 14: 9106
    • 9d Ma W, Sun M, Huang D, Chu C, Hedtke T, Wang X, Zhao Y, Kim JH, Elimelech M. Environ. Sci. Technol. 2022; 56: 8733
    • 9e Marí A, Baeza JA, Calvo L, Gilarranz MA. J. Environ. Chem. Eng. 2022; 10: 108011
    • 10a Pan Z, Zhu X, Jiang H, Liu Y, Chen R. J. Exp. Nanosci. 2021; 16: 62
    • 10b Chen Q, Jiang H, Chen R. Chem. Eng. Sci. 2022; 248: 117160
    • 11a Qing W, Li X, Shao S, Shi X, Wang J, Feng Y, Zhang W, Zhang W. J. Membr. Sci. 2019; 583: 118
    • 11b Jiang H, Liu Y, Xing W, Chen R. Ind. Eng. Chem. Res. 2021; 60: 8969
    • 12a Hubadillah SK, Othman MH. D, Matsuura T, Ismail AF, Rahman MA, Harun Z, Jaafar J, Nomura M. Ceram. Int. 2018; 44: 4538
    • 12b Zhao YX, Li P, Li RH, Li XY. Chemosphere 2019; 223: 383
    • 12c Zhao YX, Li P, Li RH, Li XY. J. Hazard. Mater. 2020; 385: 121557
    • 13a Jiang H, Sun X, Du Y, Chen R, Xing W. Chin. J. Catal. 2014; 35: 1990
    • 13b Du Y, Chen R. Korean J. Chem. Eng. 2015; 32: 1759
  • 14 Guo L, Bai J, Li C, Meng Q, Liang H, Sun W, Li H, Liu H. Appl. Surf. Sci. 2013; 283: 107
  • 15 Hu X, Yu Y, Zhou J, Wang Y, Liang J, Zhang X, Chang Q, Song L. J. Membr. Sci. 2015; 476: 200
    • 16a Albert S, Horbach R, Deising HB, Siewert B, Csuk R. Bioorg. Med. Chem. 2011; 19: 5155
    • 16b Cappello V, Marchetti L, Parlanti P, Landi S, Tonazzini I, Cecchini M, Piazza V, Gemmi M. Sci. Rep. 2016; 6: 1
    • 16c Moilanen LJ, Hamalainen M, Lehtimaki L, Nieminen RM, Muraki K, Moilanen E. Basic Clin. Pharmacol. Toxicol. 2016; 118: 238
    • 16d Akinwumi BC, Bordun KM, Anderson HD. Int. J. Mol. Sci. 2018; 19: 792
    • 17a Bergbreiter DE, Su H.-L, Koizumi H, Tian J. J. Organomet. Chem. 2011; 696: 1272
    • 17b Owusu MO, Handa S, Slaughter LM. Appl. Organomet. Chem. 2012; 26: 712
    • 17c Sun N, Chen M, Jin L, Zhao W, Hu B, Shen Z, Hu X. Beilstein J. Org. Chem. 2017; 13: 1735
    • 18a Shore G, Morin S, Organ MG. Angew. Chem. Int. Ed. 2006; 45: 2761
    • 18b Liu S, Fukuyama T, Sato M, Ryu I. Org. Process Res. Dev. 2004; 8: 477
    • 18c Glasnov TN, Findenig S, Kappe CO. Chem. Eur. J. 2009; 15: 1001
    • 18d Nikbin N, Ladlow M, Ley SV. Org. Process Res. Dev. 2007; 11: 458
    • 18e Karbass N, Sans V, Garcia-Verdugo E, Burguete MI, Luis SV. Chem. Commun. 2006; 3095
  • 19 Zhang H, Huang X. Adv. Synth. Catal. 2016; 358: 3736
  • 20 Gisbert P, Trillo P, Pastor IM. ChemistrySelect 2018; 3: 887
  • 21 Milton MD, Garg P. Appl. Organomet. Chem. 2016; 30: 759
  • 22 Wang P, Verma P, Xia G, Shi J, Qiao JX, Tao S, Cheng PT. W, Poss MA, Farmer ME, Yeung KS, Yu JQ. Nature 2017; 551: 489
  • 23 Kim HT, Kang E, Kim M, Joo JM. Org. Lett. 2021; 23: 3657
  • 24 Fan Z, Chen X, Tanaka K, Park HS, Lam NY. S, Wong JJ, Houk KN, Yu JQ. Nature 2022; 610: 87
  • 25 Shafie H, Niknam K. New J. Chem. 2021; 45: 11697
  • 26 Fang F, Li Y, Tian S.-K. Eur. J. Org. Chem. 2011; 1084
  • 27 Zhang L, Wang A, Wang W, Huang Y, Liu X, Miao S, Liu J, Zhang T. ACS Catal. 2015; 5: 6563
  • 28 Yu W, Liu L, Huang T, Zhou X, Chen T. Org. Lett. 2020; 22: 7123
  • 29 Nie G, Deng X, Lei X, Hu Q, Chen Y. RSC Adv. 2016; 6: 75277
  • 30 Yuan J.-W, Yang L.-R, Mao P, Qu L.-B. RSC Adv. 2016; 6: 87058
  • 31 Valentini F, Carpisassi L, Comès A, Aprile C, Vaccaro L. ACS Sustainable Chem. Eng. 2022; 10: 12386
  • 32 Banik A, Mandal SK. ACS Catal. 2022; 12: 5000
  • 33 Girase TR, Kapdi AR. Chem. Asian J. 2019; 14: 2611
  • 34 Iranpoor N, Rahimi S, Panahi F. RSC Adv. 2015; 5: 49559
  • 35 Xiao J, Zhang H, Ejike AC, Wang L, Tao M, Zhang W. React. Funct. Polym. 2021; 161: 104843
  • 36 Pan C, Yang C, Li K, Zhang K, Zhu Y, Wu S, Zhou Y, Fan B. Org. Lett. 2021; 23: 7188
  • 37 Jia X, Frye LI, Zhu W, Gu S, Gunnoe TB. J. Am. Chem. Soc. 2020; 142: 10534