Synthesis 2017; 49(15): 3269-3280
DOI: 10.1055/s-0036-1588428
short review
© Georg Thieme Verlag Stuttgart · New York

Iron-Catalyzed Cross-Coupling: Mechanistic Insight for Rational Applications in Synthesis

Tobias Parchomyk
Institut für Organische und Biomolekulare Chemie, Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany   Email: konrad.koszinowski@chemie.uni-goettingen.de
,
Institut für Organische und Biomolekulare Chemie, Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany   Email: konrad.koszinowski@chemie.uni-goettingen.de
› Author Affiliations
Further Information

Publication History

Received: 27 April 2017

Accepted: 28 April 2017

Publication Date:
12 June 2017 (online)


Dedicated to Professor Herbert Mayr on the occasion of his 70th birthday

Abstract

Iron-catalyzed cross-coupling reactions provide a promising way to form new carbon–carbon bonds and build up molecular complexity. This short review presents recent advances in the synthetic application of these reactions as well as in the elucidation of their mechanism. It also highlights remaining problems and aims at pointing out ways toward possible remedies.

1 Introduction

2 Synthesis: Recent Accomplishments and Unsolved Problems

2.1 Substrate Scope: Electrophiles

2.2 Substrate Scope: Nucleophiles

2.3 Catalyst Activity and Chemoselectivity

2.4 Stereoselectivity

2.5 Practical Aspects

3 Mechanism: Recent Insights and Open Questions

3.1 Transmetallation and Activation of the Iron Precatalyst

3.2 Coupling via Oxidative Addition and Reductive Elimination

3.3 Coupling via C–X Bond Homolysis and Radical Rebound

3.4 Coupling via Bimolecular C–X Bond Homolysis

3.5 Other Reactions of Organoiron Species with Electrophiles

4 Toward Rational Reaction Improvement

5 Conclusion

 
  • References

  • 1 Metal-Catalyzed Cross-Coupling Reactions and More . de Meijere A. Bräse S. Oestreich M. Wiley–VCH; Weinheim: 2014
  • 2 Ritter SK. Chem. Eng. News 2016; 94: 10
  • 3 Bolm C. Legros J. Le Paih J. Zani L. Chem. Rev. 2004; 104: 6217
    • 4a Sherry BD. Fürstner A. Acc. Chem. Res. 2008; 41: 1500
    • 4b Czaplik WM. Mayer M. Cvengroš J. Jacobi von Wangelin A. ChemSusChem 2009; 2: 396
    • 5a Cahiez G. Moyeux A. Cossy J. Adv. Synth. Catal. 2015; 357: 1983
    • 5b Kuzmina OM. Steib AK. Moyeux A. Cahiez G. Knochel P. Synthesis 2015; 47: 1696
    • 5c Legros J. Figadère B. Nat. Prod. Rep. 2015; 32: 1541
    • 5d Bedford RB. Acc. Chem. Res. 2015; 48: 1485
    • 5e Carter E. Murphy DM. Top. Catal. 2015; 58: 759
    • 5f Mako TL. Byers JA. Inorg. Chem. Front. 2016; 3: 766
    • 5g Guérinot A. Cossy J. Top. Curr. Chem. 2016; 374
    • 5h Fürstner A. ACS Cent. Sci. 2016; 2: 778
    • 5i Cassani C. Bergonzini G. Wallentin C.-J. ACS Catal. 2016; 6: 1640
  • 6 Barré B. Gonnard L. Campagne R. Reymond S. Marin J. Ciapetti P. Brellier M. Guérinot A. Cossy J. Org. Lett. 2014; 16: 6160
  • 7 Parmar D. Henkel L. Dib J. Rueping M. Chem. Commun. 2015; 51: 2111
  • 8 Mullens P. Cleator E. McLaughlin M. Bishop B. Edwards J. Goodyear A. Andreani T. Jin Y. Kong J. Li H. Williams M. Zacuto M. Org. Process Res. Dev. 2016; 20: 1075
  • 9 Greiner R. Blanc R. Petermayer C. Karaghiosoff K. Knochel P. Synlett 2016; 27: 231
  • 10 Kuzmina OM. Steib AK. Fernandez S. Boudot W. Markiewicz JT. Knochel P. Chem. Eur. J. 2015; 21: 8242
    • 11a Kessler SN. Bäckvall J.-E. Angew. Chem. Int. Ed. 2016; 55: 3734; Angew. Chem. 2016, 128, 3798
    • 11b Kessler SN. Hundemer F. Bäckvall J.-E. ACS Catal. 2016; 6: 7448
  • 12 Tindall DJ. Krause H. Fürstner A. Adv. Synth. Catal. 2016; 358: 2398
  • 13 Iwasaki T. Akimoto R. Kuniyasu H. Kambe N. Chem. Asian J. 2016; 11: 2834
  • 14 Gärtner D. Stein AL. Grupe S. Arp J. Jacobi von Wangelin A. Angew. Chem. Int. Ed. 2015; 54: 10545; Angew. Chem. 2015, 127, 10691
  • 15 Parra Rivera AC. Still R. Frantz DE. Angew. Chem. Int. Ed. 2016; 55: 6689 ; Angew. Chem. 2016, 128, 6801
  • 16 Shi W.-J. Zhao H.-W. Wang Y. Cao Z.-C. Zhang L.-S. Yu D.-G. Shi Z.-J. Adv. Synth. Catal. 2016; 358: 2410
  • 17 Li Z. Liu L. Sun H.-M. Shen Q. Zhang Y. Dalton Trans. 2016; 45: 17739
  • 18 Xing T. Zhang Z. Da Y.-X. Quan Z.-J. Wang X.-C. Asian J. Org. Chem. 2015; 4: 538
  • 19 Agrawal T. Cook SP. Org. Lett. 2014; 16: 5080
  • 20 Chen X. Quan Z.-J. Wang X.-C. Appl. Organomet. Chem. 2015; 29: 296
  • 21 Jia Z. Liu Q. Peng X.-S. Wong HN. C. Nat. Commun. 2016; 7: 10614
  • 22 Toriyama F. Cornella J. Wimmer L. Chen T.-G. Dixon DD. Creech G. Baran PS. J. Am. Chem. Soc. 2016; 138: 11132
  • 23 Kim JG. Son YH. Seo JW. Kang EJ. Eur. J. Org. Chem. 2015; 1781
  • 24 Echeverria P.-G. Fürstner A. Angew. Chem. Int. Ed. 2016; 55: 11188; Angew. Chem. 2016, 128, 11354
  • 25 Zhuo C.-X. Fürstner A. Angew. Chem. Int. Ed. 2016; 55: 6051; Angew. Chem. 2016, 128, 6155
  • 26 Bartoccini F. Piersanti G. Armaroli S. Cerri A. Cabri W. Tetrahedron Lett. 2014; 55: 1376
    • 27a Shakhmaev RN. Sunagatullina AS. Zorin VV. Russ. J. Org. Chem. 2014; 50: 322
    • 27b Shakhmaev RN. Sunagatullina AS. Zorin VV. Russ. J. Org. Chem. 2015; 51: 95
    • 27c Shakhmaev RN. Sunagatullina AS. Zorin VV. Russ. J. Gen. Chem. 2016; 86: 1969
  • 28 Cheung CW. Ren P. Hu X. Org. Lett. 2014; 16: 2566
  • 29 Giannerini M. Fañanás-Mastral M. Feringa BL. Nat. Chem. 2013; 5: 667
  • 30 Benischke A. Breuillac AJ. A. Moyeux A. Cahiez G. Knochel P. Synlett 2016; 27: 471
  • 31 Gallagher KJ. Webster RL. Chem. Commun. 2014; 50: 12109
  • 32 Clifton J. Habraken ER. M. Pringle PG. Manners I. Catal. Sci. Technol. 2015; 5: 4350
  • 33 Brown CA. Nile TA. Mahon MF. Webster RL. Dalton Trans. 2015; 44: 12189
  • 34 Benischke AD. Leroux M. Knoll I. Knochel P. Org. Lett. 2016; 18: 3626
    • 35a Hatekayama T. Hashimoto T. Kathriarachchi KK. A. D. S. Zenmyo T. Seike H. Nakamura M. Angew. Chem. Int. Ed. 2012; 51: 8834; Angew. Chem. 2012, 124, 8964
    • 35b Bedford RB. Carter E. Cogswell PM. Gower NJ. Haddow MF. Harvey JN. Murphy DM. Neeve EC. Nunn J. Angew. Chem. Int. Ed. 2013; 52: 1285; Angew. Chem. 2013, 125, 1323
    • 35c Bedford RB. Brenner PB. Carter E. Clifton J. Cogswell PM. Gower NJ. Haddow MF. Harvey JN. Kehl JA. Murphy DM. Neeve EC. Neidig ML. Nunn J. Snyder BE. R. Taylor J. Organometallics 2014; 33: 5767
  • 36 Bedford RB. Brenner PB. Carter E. Carvell TW. Cogswell PM. Gallagher T. Harvey JN. Murphy DM. Neeve EC. Nunn J. Pye DR. Chem. Eur. J. 2014; 20: 7935
  • 37 Bedford RB. Gallagher T. Pye DR. Savage W. Synthesis 2015; 47: 1761
  • 38 Dunsford JJ. Clark ER. Ingleson MJ. Dalton Trans. 2015; 44: 20577
  • 39 Atack TC. Lecker RM. Cook SP. J. Am. Chem. Soc. 2014; 136: 9521
  • 40 Yoshida T. Ilies L. Nakamura E. ACS Catal. 2017; 7: 3199
  • 41 Kawamura S. Agata R. Nakamura M. Org. Chem. Front. 2015; 2: 1053
  • 42 Hatekayama T. Nakamura M. J. Am. Chem. Soc. 2007; 129: 9844
  • 43 Chua Y.-Y. Duong HA. Chem. Commun. 2014; 50: 8424
  • 44 Chua Y.-Y. Duong HA. Chem. Commun. 2016; 52: 1466
  • 45 Agata R. Iwamoto T. Nakagawa N. Isozaki K. Hatekayama T. Takaya H. Nakamura M. Synthesis 2015; 47: 1733
  • 46 Sova M. Frlan R. Gobec S. Stavber G. Časar Z. Appl. Organomet. Chem. 2015; 29: 528
  • 47 Bauer G. Cheung CW. Hu X. Synthesis 2015; 47: 1726
  • 48 Jin M. Adak L. Nakamura M. J. Am. Chem. Soc. 2015; 137: 7128
  • 49 Sanderson JN. Dominey AP. Percy JM. Adv. Synth. Catal. 2017; 359: 1007
  • 50 Buono FG. Zhang Y. Tan Z. Brusoe A. Yang B.-S. Lorenz JC. Giovannini R. Song JJ. Yee NK. Senanayake CH. Eur. J. Org. Chem. 2016; 2599
  • 51 Handa S. Wang Y. Gallou F. Lipshutz BH. Science 2015; 349: 1087
  • 52 Wang C. Salmon L. Ciganda R. Yate L. Moya S. Ruiz J. Astruc D. Chem. Commun. 2017; 53: 644
  • 53 Bedford RB. Brenner PB. Carter E. Cogswell PM. Haddow MF. Harvey JN. Murphy DM. Nunn J. Woodall CH. Angew. Chem. Int. Ed. 2014; 53: 1804; Angew. Chem. 2014, 126, 1835
  • 54 Sun C.-L. Krause H. Fürstner A. Adv. Synth. Catal. 2014; 356: 1281
    • 55a Seidel W. Lattermann K.-J. Z. Anorg. Allg. Chem. 1982; 488: 69
    • 55b Irwin M. Jenkins RK. Denning MS. Krämer T. Grandjean F. Long GJ. Herchel R. McGrady JE. Goicoechea JM. Inorg. Chem. 2010; 49: 6160
  • 56 Al-Afyouni MH. Fillman KL. Brennessel WW. Neidig ML. J. Am. Chem. Soc. 2014; 136: 15457
    • 57a Muñoz SB. III. Daifuku SL. Brennessel WW. Neidig ML. J. Am. Chem. Soc. 2016; 138: 7492
    • 57b Bedford R. Nat. Chem. 2016; 8: 904
  • 58 Zhurkin FE. Wodrich MD. Hu X. Organometallics 2017; 36: 499
  • 59 Parchomyk T. Koszinowski K. Chem. Eur. J. 2017; 23: 3213
  • 60 Parchomyk T. Koszinowski K. Chem. Eur. J. 2016; 22: 15609
  • 61 Schoch R. Desens W. Werner T. Bauer M. Chem. Eur. J. 2013; 19: 15816
  • 62 Clémancey M. Cantat T. Blondin G. Latour J.-M. Dorlet P. Lefèvre G. Inorg. Chem. 2017; 56: 3834
  • 63 Lefèvre G. Jutand A. Chem. Eur. J. 2014; 20: 4796
  • 64 Nakamura M. Matsuo K. Ito S. Nakamura E. J. Am. Chem. Soc. 2004; 126: 3686
  • 65 Bedford RB. Brenner PB. Elorriaga D. Harvey JN. Nunn J. Dalton Trans. 2016; 45: 15811
  • 66 Bauer G. Wodrich MD. Scopelliti R. Hu X. Organometallics 2015; 34: 289
  • 67 Kneebone JL. Fleischauer VE. Daifuku SL. Shaps AA. Bailey JM. Iannuzzi TE. Neidig ML. Inorg. Chem. 2016; 55: 272
  • 68 Daifuku SL. Kneebone JL. Snyder BE. R. Neidig ML. J. Am. Chem. Soc. 2015; 137: 11432
  • 69 Takaya H. Nakajima S. Nakagawa N. Isozaki K. Iwamoto T. Imayoshi R. Gower NJ. Adak L. Hatekayama T. Honma T. Takagaki M. Sunada Y. Nagashima H. Hashizume D. Takahashi O. Nakamura M. Bull. Chem. Soc. Jpn. 2015; 88: 410
  • 70 Liu Y. Xiao J. Wang L. Song Y. Deng L. Organometallics 2015; 34: 599
    • 71a Liu Y. Shi M. Deng L. Organometallics 2014; 33: 5660
    • 71b Przyojski JA. Veggeberg KP. Arman HD. Tonzetich ZJ. ACS Catal. 2015; 5: 5938
  • 72 Casitas A., Rees J. A., Goddard R., Bill E., DeBeer S., Fürstner A.; Angew. Chem. Int. Ed.; DOI: 10.1002/anie.201612299; Angew. Chem. DOI: 10.1002/ange.201612299.
  • 73 Hedström A. Izakian Z. Vreto I. Wallentin C.-J. Norrby P.-O. Chem. Eur. J. 2015; 21: 5946
  • 74 Bekhradnia A. Norrby P.-O. Dalton Trans. 2015; 44: 3959
  • 75 Heggen B. Thiel W. J. Organomet. Chem. 2016; 804: 42
    • 76a Krasovskiy A. Duplais C. Lipshutz BH. J. Am. Chem. Soc. 2009; 131: 15592
    • 76b Krasovskiy A. Duplais C. Lipshutz BH. Org. Lett. 2010; 12: 4742
    • 76c Lipshutz BH. Ghorai S. Abela AR. Moser R. Nishikata T. Duplais C. Krasovskiy A. Gaston RD. Gadwood RC. J. Org. Chem. 2011; 76: 4379
    • 77a Vidal C. García-Álvarez J. Hernán-Gómez A. Kennedy AR. Hevia E. Angew. Chem. Int. Ed. 2014; 53: 5969; Angew. Chem. 2014, 126, 6079
    • 77b Cicco L. Sblendorio S. Mansueto R. Perna FM. Salomone A. Florio S. Capriati V. Chem. Sci. 2016; 7: 1192