Synthesis 2017; 49(15): 3247-3254
DOI: 10.1055/s-0036-1588444
short review
© Georg Thieme Verlag Stuttgart · New York

How Does Nucleophilic Aromatic Substitution in Nitroarenes Really Proceed: General Mechanism

Mieczysław Mąkosza
Institute of Organic Chemistry, Polish Academy of Sciences, /ul. Kasprzaka 44/52, 01-224 Warsaw, Poland   Email: icho-s@icho.edu.pl
› Author Affiliations
This work was supported by the National Science Centre (Grant No. UMO-2014/15/B/ST5/021800).
Further Information

Publication History

Received: 27 April 2017

Accepted: 08 May 2017

Publication Date:
06 June 2017 (online)


Dedicated to Professor Herbert Mayr on the occasion of his 70th birthday

Abstract

On the basis of previously published experimental studies and ab initio calculations, a general corrected mechanism of nucleophilic aromatic substitution was formulated. It was shown that conventional nucleophilic substitution of halogens is a slow secondary reaction whereas nucleophilic substitution of hydrogen is the fast primary process. The general mechanism embraces both of these alternative and complementary reactions.

 
  • References

  • 1 Miller J. Aromatic Nucleophilic Substitution . Elsevier; Amsterdam: 1968
    • 2a Terrier F. Nucleophilic Aromatic Displacement . Verlag Chemie; Weinheim: 1991
    • 2b Crampton MR. In Arene Chemistry, Reaction Mechanism and Methods for Aromatic Compounds . Mortier J. John Wiley & Sons; Hoboken, NJ: 2016. Chap. 6, 13
  • 3 Bunnett JF. Zahler RE. Chem. Rev. 1951; 49: 273
    • 4a Clayden J. Greeves N. Warren S. Wothers P. Organic Chemistry . Oxford University Press; New York: 2001
    • 4b Anslyn EV. Daugherty WA. Modern Physical Organic Chemistry . University Science Books; Sausalito: 2006
    • 4c Moloney MG. Structure and Reactivity in Organic Chemistry. Blackwell; Oxford: 2008
  • 5 von Richter V. Chem. Ber. 1871; 4: 21
  • 6 Davis RB. Pizzini LC. J. Org. Chem. 1960; 25: 1884
  • 7 Mąkosza M. Winiarski J. Acc. Chem. Res. 1987; 20: 282
  • 8 Mąkosza M. Chem. Soc. Rev. 2010; 39: 2855
  • 9 Mąkosza M. Wojciechowski K. Chem. Rev. 2004; 104: 2631
  • 10 Mąkosza M. Chem.. Eur. J. 2014; 20: 5536
  • 11 Mąkosza M. Synthesis 2011; 2341
    • 12a Mąkosza M. Staliński K. Chem. Eur. J. 1997; 3: 2025
    • 12b Adam W. Mąkosza M. Staliński K. Zhao CG. J. Org. Chem. 1998; 63: 4390
  • 13 Mąkosza M. Sulikowski D. J. Org. Chem. 2009; 74: 3827
  • 14 Mąkosza M. Surowiec M. Szczepańska A. Sulikowski D. Maltsev O. Synlett 2007; 470
  • 15 Mąkosza M. Sypniewski M. Tetrahedron 1994; 50: 4913
    • 16a Moskalev N. Barbasiewicz M. Mąkosza M. Tetrahedron 2004; 60: 347
    • 16b Xu Q.-L. Gao H. Yousufuddin M. Ess DH. Kürti L. J. Am. Chem. Soc. 2013; 135: 14048
  • 17 Malykhin EV. Kolesnichenko GA. Shteingarts VD. Zh. Org. Khim. 1985; 21: 1150
  • 18 Szpakiewicz B. Grzegorzek M. Zh. Org. Khim. 2004; 40: 869
  • 19 van der Plas HC. Woźniak M. Croat. Chem. Acta 1986; 59: 33
  • 20 Bartoli G. Acc. Chem. Res. 1984; 17: 109
  • 21 Mąkosza M. Surowiec M. J. Organomet. Chem. 2001; 624: 167
    • 22a Goliński J. Mąkosza M. Tetrahedron Lett. 1978; 19: 3495
    • 22b Mąkosza M. Glinka T. J. Org. Chem. 1983; 48: 3860
    • 22c Mąkosza M. Stalewski J. Liebigs Ann. Chem. 1991; 605
    • 23a Mąkosza M. Owczarczyk Z. J. Org. Chem. 1989; 54: 5094
    • 23b Czaban-Jóźwiak J. Loska R. Mąkosza M. J. Org. Chem. 2016; 81: 11751
    • 23c Mąkosza M. Surowiec M. Voskresensky S. Synthesis 2000; 1237
  • 24 Mąkosza M. Sienkiewicz K. J. Org. Chem. 1998; 63: 4199
    • 25a Katritzky AR. Laurenzo KS. J. Org. Chem. 1988; 53: 3978
    • 25b Mąkosza M. Białecki M. J. Org. Chem. 1998; 63: 4878
  • 26 Russel GA. Janzen EG. Strom ET. J. Am. Chem. Soc. 1964; 86: 1807
  • 27 Mąkosza M. Kwast A. Eur. J. Org. Chem. 2004; 2125
  • 28 Mąkosza M. Lemek T. Kwast A. Terrier F. J. Org. Chem. 2002; 67: 394
  • 29 Błażej S. Mąkosza M. Chem. Eur. J. 2008; 14: 11113
  • 30 Seelinger F. Błażej S. Bernhardt S. Mąkosza M. Mayr H. Chem. Eur. J. 2008; 14: 6108
  • 31 Davis RB. Pizzini LC. Bara J. J. Org. Chem. 1961; 26: 4270
  • 32 Wróbel Z. Kwast A. Synthesis 2010; 3865
  • 33 Błaziak K. Danikiewicz W. Mąkosza M. J. Am. Chem. Soc. 2016; 138: 7276
  • 34 Stenlid JH. Brinck T. J. Org. Chem. 2017; 82: 3072
  • 35 Contreras R. Campodónico PR. Ormazábal-Toledo R. In Arene Chemistry: Reaction Mechanisms and Methods for Aromatic Compounds . Mortier J. John Wiley & Sons; Hoboken, NJ: 2016. Chap. 7, 17
  • 36 Mąkosza M. In Arene Chemistry: Reaction Mechanisms and Methods for Aromatic Compounds . Mortier J. John Wiley & Sons; Hoboken, NJ: 2016. Chap. 11, 26
  • 37 Mąkosza M. Sulikowski D. Eur. J. Org. Chem. 2011; 6887
  • 38 Mąkosza M. Danikiewicz W. Wojciechowski K. Liebigs Ann. Chem. 1998; 203
  • 39 Mąkosza M. Nizamov S. Tetrahedron 2001; 57: 9615
  • 40 Guo X. Mayr H. J. Am. Chem. Soc. 2014; 136: 11499
  • 41 Mąkosza M. Nizamov S. Kwast A. Tetrahedron 2004; 60: 5413