Synthesis 2017; 49(14): 3137-3144
DOI: 10.1055/s-0036-1589004
paper
© Georg Thieme Verlag Stuttgart · New York

Regioselective Domino Synthesis of 2-Alkylflavans via Hidden Brønsted Acid Catalysis

Ha Jeong Jin
Department of Applied Chemistry, Kyung Hee University, Yongin 17104, Korea   Email: ejkang24@khu.ac.kr
,
Jae Hyung Kim
Department of Applied Chemistry, Kyung Hee University, Yongin 17104, Korea   Email: ejkang24@khu.ac.kr
,
Eun Joo Kang*
Department of Applied Chemistry, Kyung Hee University, Yongin 17104, Korea   Email: ejkang24@khu.ac.kr
› Author Affiliations
Supported by: This study was supported by the Kyung Hee University Research Fund (KHU-20130575)
Further Information

Publication History

Received: 25 January 2017

Accepted after revision: 24 March 2017

Publication Date:
25 April 2017 (online)


Abstract

A range of alkyl-substituted flavans, which are important structural elements in natural products and pharmaceutical molecules, were prepared by successive hidden Brønsted acid catalyzed domino reaction, intermolecular hydroarylation, and intramolecular hydroalkoxylation. 1,1-Disubstituted allenes were activated under mild acidic AgOTf/t-BuCl condition to initiate the regioselective Friedel–Crafts reaction with phenol derivatives, and the consecutive reaction triggered by the 6-endocyclization led to the formation of a new type of 2-alkylflavan. Mechanistic study of the reaction intermediates and control experiments support the catalytic pathway and advantage of hidden Brønsted acid catalysis.

Supporting Information

 
  • References

    • 1a Bauer DJ. Selway JW. T. Batchelor JF. Tisdale M. Caldwell IC. Young DA. B. Nature 1981; 292: 369
    • 1b Li Y. Leung K.-T. Yao F. Ooi LS. M. Ooi VE. C. J. Nat. Prod. 2006; 69: 833
    • 1c Hu X. Wang J.-W. Yu M.-H. Zhao Q.-S. Wang H.-Y. Hou A.-J. J. Nat. Prod. 2012; 75: 82
    • 1d Moosophon P. Kanokmedhakul S. Kanokmedhakul K. Buayairaksa M. Noichan J. Poopasit K. J. Nat. Prod. 2013; 76: 1298
    • 2a Numata A. Takemura T. Ohbayashi M. Katsuno T. Yamamoto K. Sato K. Kobayashi S. Chem. Pharm. Bull. 1983; 31: 2146
    • 2b Mocanu M.-M. Ganea C. Georgescu L. Váradi T. Shrestha D. Baran I. Katona E. Nagy P. Szöllősi J. J. Nat. Prod. 2014; 77: 250
    • 2c Sironi E. Colombo L. Lompo A. Messa M. Bonanomi M. Regonesi ME. Salmona M. Airoldi C. Chem. Eur. J. 2014; 20: 13793
    • 2d Ibraheem F. Gaffoor I. Tan Q. Shyu C.-R. Chopra S. Molecules 2015; 20: 2388
    • 3a Rodriguez R. Moses JE. Adlington RM. Baldwin JE. Org. Biomol. Chem. 2005; 3: 3488
    • 3b Sugimoto H. Nakamura S. Ohwada T. Adv. Synth. Catal. 2007; 349: 669
    • 3c Gharpure SJ. Sathiyanarayanan AM. Vuram PK. RSC Adv. 2013; 3: 18279
    • 3d Gu Y. Barrault J. Jerome F. Adv. Synth Catal. 2009; 351: 3269
    • 3e Bharate SB. Mudududdla R. Bharate JB. Battini N. Battula S. Yadav RR. Singh B. Vishwakarma RA. Org. Biomol. Chem. 2012; 10: 5143
    • 3f Sharma R. Abbat S. Mudududdla R. Vishwakarma RA. Bharatam PV. Bharate SB. Tetrahedron Lett. 2015; 56: 4057
    • 4a Wang Y. Franzen R. Synlett 2012; 23: 925
    • 4b Suchand B. Krishna J. Ramulu BV. Dibyendu D. Reddy AG. K. Mahendar L. Satyanarayana G. Tetrahedron Lett. 2012; 53: 3861
    • 4c Ramulu BV. Mahendar L. Krishna J. Reddy AG. K. Suchand B. Satyanarayana G. Tetrahedron 2013; 69: 8305
    • 5a Jeong Y. Kim D. Choi Y. Ryu J. Org. Biomol. Chem. 2011; 9: 374
    • 5b Francesco IN. Cacciuttolo B. Pucheault M. Antoniotti S. Green Chem. 2015; 17: 837
  • 6 Fazeli A. Pfasterer D. Rudolph M. Hashmi AS. K. J. Organomet. Chem. 2015; 795: 68
    • 7a Youn SW. Eom JI. J. Org. Chem. 2006; 71: 6705
    • 7b Adrio LA. Hii KK. M. Chem. Commun. 2008; 2325
    • 7c Dang TT. Boeck F. Hintermann L. J. Org. Chem. 2011; 76: 9353
    • 8a Yamamoto Y. Itonaga K. Org. Lett. 2009; 11: 717
    • 8b Vece V. Ricci J. Martini SP. Nava P. Carissan Y. Humbel S. Dunach E. Eur. J. Org. Chem. 2010; 6239
  • 9 Hashimoto K. Horino Y. Kuroda S. Heterocycles 2010; 80: 187
    • 10a Jung MS. Kim WS. Shin YH. Kim YS. Kang EJ. Org. Lett. 2012; 14: 6262
    • 10b Kim JH. Kim SW. Jung MS. Ahn KH. Kang EJ. Bull. Korean Chem. Soc. 2015; 36: 2846
    • 11a Li Z. Zhang J. Brouwer C. Yang C. Reich NW. He C. Org. Lett. 2006; 8: 4175
    • 11b Rosenfeld DC. Shekhar S. Takemiya A. Utsunomiya M. Hartwig JF. Org. Lett. 2006; 8: 4179
    • 12a Wabnitz TC. Yu J.-Q. Spencer JB. Chem. Eur. J. 2004; 10: 484
    • 12b Tschan MJ.-L. Thomas CM. Strub H. Carpentier J.-F. Adv. Synth. Catal. 2009; 351: 2496
    • 12c Taylor JG. Adrio LA. Hii KK. M. Dalton Trans. 2010; 39: 1171
    • 12d Michon C. Medina F. Capet F. Roussel P. Agbossou-Niedercorn F. Adv. Synth. Catal. 2010; 352: 3293
    • 12e Brooner RE. M. Robertson BD. Widenhoefer RA. Organometallics 2014; 33: 6466
    • 12f Schmidt RK. Müther K. Mück-Lichtenfeld C. Grimme S. Oestreich M. J. Am. Chem. Soc. 2012; 134: 4421
  • 13 Yue Y. Novianti ML. Tessensohn ME. Hirao H. Webster RD. Org. Biomol. Chem. 2015; 13: 11732
  • 14 Orr RK. Campeau L-C. Chobanlan HR. Dunn JM. M. Pio B. Plummer CW. Nolting A. Ruck RT. Synthesis 2017; 49: 657