Synthesis 2017; 49(23): 5217-5223
DOI: 10.1055/s-0036-1589095
paper
© Georg Thieme Verlag Stuttgart · New York

Synthesis of Stilbene-Quinone Hybrids through Heck Reactions in PEG-400

Felipe C. Demidoff
Laboratório de Química, Universidade Federal do Rio de Janeiro, Campus Professor Aloísio Teixeira, Macaé, RJ 27930-560, Brazil   Email: chaquip@gmail.com
,
Fabrícia P. de Souza
Laboratório de Química, Universidade Federal do Rio de Janeiro, Campus Professor Aloísio Teixeira, Macaé, RJ 27930-560, Brazil   Email: chaquip@gmail.com
,
Chaquip D. Netto*
Laboratório de Química, Universidade Federal do Rio de Janeiro, Campus Professor Aloísio Teixeira, Macaé, RJ 27930-560, Brazil   Email: chaquip@gmail.com
› Author Affiliations
Financial supports from Brazilian agencies CNPq (Project 442337/2014-0), FAPERJ (Project E-26/111.358/2014), and UFRJ are acknowledged.
Further Information

Publication History

Received: 17 May 2017

Accepted after revision: 17 July 2017

Publication Date:
28 August 2017 (online)


Dedicated to Professor Paulo R. R. Costa on the occasion of his 67th birthday

Abstract

Styrenes were coupled with 3-iodolawsone in PEG-400 at 90 °C, leading stereoselectively to (E)-stilbene-quinone hybrids through Heck reactions. The best reaction conditions were found to be the use of NaOH (3 equiv) and 10 mol% of palladium acetate at 90 °C for 15 minutes. The chemical yields of the Heck reactions using styrenes with electron-withdrawing groups (65–98%) were greater than styrenes bearing electron-donating groups (7–32%) on the aromatic ring. In particular, the chemical yields of Heck reactions involving nitrostyrenes were the best ones observed.

Supporting Information

 
  • References

    • 1a Netto CD. da Silva AJ. M. Salustiano EJ. S. Bacelar TS. Riça IG. Cavalcante MC. M. Rumjanek VM. Costa PR. R. Bioorg. Med. Chem. 2010; 18: 1610
    • 1b Buarque CD. Militão GC. G. Lima DJ. B. Costa-Lotufo LV. Pessoa C. Moraes MO. Cunha-Junior EF. Torres-Santos EC. Netto CD. Costa PR. R. Bioorg. Med. Chem. 2011; 19: 6885
    • 1c Salustiano EJ. S. Netto CD. Fernandes RF. da Silva AJ. M. Bacelar TS. Castro CP. Buarque CD. Maia RC. Rumjanek VM. Costa PR. R. Invest. New Drugs 2010; 28: 139
  • 2 Linardi MC. F. de Oliveira MM. Sampaio MR. P. J. Med. Chem. 1975; 18: 1159
    • 3a Wellington KW. RSC Adv. 2015; 5: 20309
    • 3b Vieira AA. Brandão IR. Valença WO. Simone CA. Cavalcanti BC. Pessoa C. Carneiro TR. Braga AL. Júnior EN. S. Eur. J. Med. Chem. 2015; 101: 254
    • 3c Galm U. Hager MH. Lanen SG. V. Ju J. Thorson JS. Shen B. Chem. Rev. 2005; 105: 739
    • 3d Chen Y. Hu L. Med. Res. Rev. 2009; 29: 29
    • 3e Halliwell B. Gutteridge J. Free Radicals in Biology and Medicine . 4th ed. Oxford University Press; Oxford: 2007: 1
    • 3f Salas C. Tapia RA. Ciudad K. Armstrong V. Orellana M. Kemmerling U. Ferreira J. Maya JD. Morello A. Bioorg. Med. Chem. 2008; 16: 668
    • 3g Pink JJ. Planchon SM. Tagliarino C. Varnes ME. Siegel D. Boothman DA. J. Biol. Chem. 2000; 275: 5416
    • 3h O’Brien PJ. Chem. Biol. Interact. 1991; 80: 1
    • 4a Zhang Y. Shen M. Cui S. Hou T. Bioorg. Med. Chem. Lett. 2014; 24: 5470
    • 4b Moran BW. Anderson FP. Devery A. Cloonan S. Butler WE. Varughese S. Draper SM. Kenny PT. M. Bioorg. Med. Chem. 2009; 17: 4510
    • 4c Dong Z. Mutat. Res. 2003; 523: 145
    • 4d Wolter F. Ulrich S. Stein J. J. Nutr. 2004; 34: 3219
    • 4e Garcia GX. Larsen SW. Pye C. Galbreath M. Isovitsch R. Fradinger EA. Bioorg. Med. Chem. Lett. 2013; 23: 6355
    • 4f Abourashed EA. J. Nat. Prod. 2017; 80: 577
    • 5a Khan ZA. Iqbal A. Shahzad SA. Mol. Divers. 2017; 21: 483
    • 5b Ferré-Filmon K. Delaude L. Demonceau A. Noels AF. Coord. Chem. Rev. 2004; 248: 2323
    • 5c Alacid E. Nájera C. ARKIVOC 2008; (viii): 50
    • 5d Sharma N. Mohanakrishnan D. Shard A. Sharma A. Saima, Sinha AK. Sahal D. J. Med. Chem. 2012; 55: 297
    • 6a Heck RF. J. Am. Chem. Soc. 1968; 90: 5518
    • 6b Mizoroki T. Mori K. Ozaki A. Bull. Chem. Soc. Jpn. 1971; 44: 581
    • 6c Beletskaya IP. Cheprakov AV. Chem. Rev. 2000; 100: 3009
    • 6d Wang W. Yang Q. Zhou R. Fu H. Li R. Chen H. Li X. J. Organomet. Chem. 2012; 697: 1
    • 6e Li J. Hu X. Liang Y. Xie Y. Tetrahedron 2006; 62: 31
    • 6f Biajoli AF. P. Schwalm CS. Limberger J. Claudino TS. Monteiro AL. J. Braz. Chem. Soc. 2014; 25: 2186
    • 6g Stouten SC. Noël T. Wang Q. Hessel V. Chem. Eng. J. 2015; 279: 143
    • 7a Pires MJ. D. Purificação SI. Santos AS. Marques MM. B. Synthesis 2017; 49: 2337
    • 7b Colacino E. Martinez J. Lamaty F. Patrikeeva LS. Khemchyan LL. Ananikov VP. Beletskaya IP. Coord. Chem. Rev. 2012; 256: 2893
    • 7c Han W. Liu N. Liu C. Jin ZL. Chin. Chem. Lett. 2010; 21: 1411
    • 8a Buarque CD. Domingos JL. O. Netto CD. Costa PR. R. Curr. Org. Synth. 2015; 12: 772
    • 8b Silva AC. Senra JD. Aguiar LC. S. Simas AB. C. de Souza AL. F. Malta LF. B. Antunes OA. C. Tetrahedron Lett. 2010; 51: 3883
    • 8c Firouzabadi H. Iranpoor N. Kazemi F. Gholinejad M. J. Mol. Cat. A: Chem. 2012; 357: 154
  • 9 de Moraes PF. Gaspar FV. Borges RH. F. Netto CD. Leão RA. C. Nájera C. Costa PR. R. Synthesis 2015; 47: 3505
  • 10 Chandrasekhar S. Narsihmulu C. Sultana SS. Reddy NR. Org. Lett. 2002; 4: 4399
  • 11 Perez AL. Lamoureux G. Zhen-Wu BY. Tetrahedron Lett. 2007; 48: 3995
  • 12 Louvis AR. Silva NA. A. Semaan FS. da Silva FC. Saramago G. de Souza LC. S. V. Ferreira BL. A. Castro HC. Salles JP. Souza AL. A. Faria RX. Ferreira VF. Martins DL. New J. Chem. 2016; 40: 7643
  • 13 Kazantzi G. Malamidou-Xenikaki E. Spyroudis S. Synlett 2006; 16: 2597
  • 14 Malamidou-Xenikaki E. Tsanakopoulou M. Chatzistefanou M. Hadjipavlou-Litina D. Tetrahedron 2015; 71: 5650
    • 15a Perez AL. Lamoureux G. Herrera A. Synth. Commun. 2004; 34: 3389
    • 15b da Silva AJ. M. Frota LC. R. M. Canavez RC. P. Gomes SL. S. Costa PR. R. J. Braz. Chem. Soc. 2009; 20: 1916
    • 16a Chen P. Wu Y. Hsu M. Wang T. Wang E. Tetrahedron 2013; 69: 653
    • 16b Azmi MN. Din MF. M. Kee CH. Suhaimi M. Ping AK. Ahmad K. Nafiah MA. Thomas NF. Mohamad K. Hoong LK. Awang K. Int. J. Mol. Sci. 2013; 14: 23369
    • 17a Hooker SC. J. Chem. Soc. 1936; 59: 1163
    • 17b Fiorito S. Epifano F. Bruyère C. Mathieu V. Kiss R. Genovese S. Bioorg. Med. Chem. Lett. 2014; 24:  454
    • 17c Cushion MT. Chen F. Kloepfer N. Antimicrob. Agents Chemother. 1997; 41: 379
    • 17d Kessl JJ. Moskalev NV. Gribble GW. Nasr M. Meshnick SR. Trumpower BL. Biochim. Biophys. Acta 2007; 1767: 319
    • 17e Ferreira RA. Oliveira AB. Gualberto SA. Vitor RW. A. Parasite 2002; 9: 261
  • 18 Liu S. Long L. Xie D. Liu L. Ma D. Tetrahedron Lett. 2015; 56: 6730
    • 19a Cabri W. Candiani I. Bedeschi A. J. Org. Chem. 1992; 57: 3558
    • 19b Cabri W. Candiani I. Acc. Chem. Res. 1995; 28: 2
  • 20 Bernini R. Mincione E. Barontini M. Provenzano G. Setti L. Tetrahedron 2007; 63: 9663
  • 21 Wuensch C. Pavkov-Keller T. Steinkellner G. Gross J. Fuchs M. Hromic A. Lyskowski A. Fauland K. Gruber K. Glueck SM. Faber K. Adv. Synth. Catal. 2015; 357: 1909
  • 22 Cattelan L. Noè M. Selva M. Demitri N. Perosa A. ChemSusChem 2015; 8: 3963
  • 23 Sun B. Hoshino J. Jermihov K. Marler L. Pezzuto JM. Mesecar AD. Cushman M. Bioorg. Med. Chem. 2010; 18: 5352
  • 24 Smith CR. RajanBabu TV. Tetrahedron 2010; 66: 1102
  • 25 Yabe Y. Maegawa T. Monguchi Y. Sajiki H. Tetrahedron 2010; 66: 8654