Synthesis 2019; 51(17): 3356-3368
DOI: 10.1055/s-0037-1611531
paper
© Georg Thieme Verlag Stuttgart · New York

l-Prolinal Dithioacetal: A Highly Effective Organocatalyst for the Direct Nitro-Michael Addition to Selected Cyclic and Aromatic Ketones

Piotr Pomarański
,
Zbigniew Czarnocki*
Further Information

Publication History

Received: 19 February 2019

Accepted after revision: 05 April 2019

Publication Date:
02 May 2019 (online)


Abstract

The synthesis of novel l-prolinal dithioacetal and its application as an organocatalyst for the direct Michael addition of cyclic ketones and acetophenone derivatives to trans-β-nitrostyrene and related compounds is described. The prolinal dithioacetal acts as effective catalyst in the case of cyclic ketones of different ring size, in particular five- and six-membered examples, as well as larger and smaller ring systems. High enantioselectivity and diastereoselectivity is observed for different substrates and trans-β-nitrostyrenes. Also, the first asymmetric syntheses of selected 2-methyl-4-nitro-1,3-diphenylbutan-1-one derivatives by application of the obtained organocatalyst is presented.

Supporting Information

 
  • References

  • 1 Liu X, Lin L, Feng X. Acc. Chem. Res. 2011; 44: 574
  • 2 Luo S, Zhang L, Cheng JP. Chem. Asian J. 2009; 4, 1184
  • 3 Gade LH, Bellemin-Laponnaz S. Coord. Chem. Rev. 2007; 251: 718
  • 4 Austin JF, MacMillan DW. C. J. Am. Chem. Soc. 2002; 124: 1172
  • 5 Kunz RK, MacMillan DW. C. J. Am. Chem. Soc. 2005; 127: 3240
  • 6 Ding CH, Dong JL, Yu LS. H, Xie JW. Chin. Chem. Lett. 2018; 29: 517
  • 7 Abubakar SS, Benaglia M, Rossi S, Annunziata R. Catal. Today 2018; 308: 94
  • 8 Trubitsõn D, Žari S, Kaabel S, Kudrjashova M, Kriis K, Järving I, Pehk T, Kanger T. Synthesis 2018; 50: 314
  • 9 Jafari E, Kundu DS, Chauhan P, Gajulapalli VP. R, von Essen C, Rissanen K, Enders D. Synthesis 2018; 50: 323
  • 10 Pendalwar SS, Chakrawar AV, Bhusare SR. Chin. Chem. Lett. 2018; 29: 942
  • 11 List B, Pojarliev P, Martin HJ. Org. Lett. 2001; 3: 2423
  • 12 Betancort JM, Sakthivel K, Thayumanavan R, Barbas CF. III. Tetrahedron Lett. 2001; 42: 4441
  • 13 Betancort JM, Barbas CF. III. Org. Lett. 2001; 3: 3737
  • 14 Kumar TP, Sattar MA, Prasad SS, Haribabu K, Reddy CS. Tetrahedron: Asymmetry 2017; 28: 401
  • 15 Duschmale J, Wiest J, Wiesner M, Wennemers H. Chem. Sci. 2013; 4: 1312
  • 16 Desmarchelier A, Coeffard V, Moreau X, Greck C. Tetrahedron 2014; 70: 2491
  • 17 Sahoo G, Rahaman H, Madarasz A, Papai I, Melarto M, Valkonen A, Pihko PM. Angew. Chem. Int. Ed. 2012; 51: 13144
  • 18 Reyes-Rangel G, Vargas-Caporali J, Juaristi E. Tetrahedron 2017; 73: 4707
  • 19 Samanta S, Krause J, Mandal T, Zhao CG. Org. Lett. 2007; 9: 2745
  • 20 Mandal T, Kuo W, Su M, Bhowmick K, Zhao JC. G. Tetrahedron 2017; 73: 6597
  • 21 Miles NJ, Sammes PG, Kennewell PD, Westwood R. J. Chem. Soc., Perkin Trans. 1 1985; 2299
  • 22 Wang Y, Li D, Lin J, Wei K. RSC Adv. 2015; 5: 5863
  • 23 Kotrusz P, Toma S, Schmalz HG, Adler A. Eur. J. Org. Chem. 2004; 1577
  • 24 Gung BW, Zou Y, Xu Z, Amicangelo JC, Irwin DG, Ma S, Zhou HC. J. Org. Chem. 2008; 73: 689