Synthesis 2019; 51(15): 2977-2983
DOI: 10.1055/s-0037-1611778
paper
© Georg Thieme Verlag Stuttgart · New York

Direct Synthesis of Vicinal Tricarbonyl Amides by Coupling of α-Oxo Acid Chlorides with Carbamoylsilanes

Yuling Han
a   College of Chemistry and Materials Science, Shanxi Normal University, Linfen 041004, P. R. China
,
Yuping Li
a   College of Chemistry and Materials Science, Shanxi Normal University, Linfen 041004, P. R. China
,
Shenghua Han
b   College of Chemistry and Engineering, Shanxi Datong University, Datong 037009, P. R. China   Email: jjxxcc2002@126.com   Email: chenjx@sxnu.edu.cn
,
Pengpeng Zhang
a   College of Chemistry and Materials Science, Shanxi Normal University, Linfen 041004, P. R. China
,
Jianxin Chen*
a   College of Chemistry and Materials Science, Shanxi Normal University, Linfen 041004, P. R. China
› Author Affiliations
This research was supported by the Shanxi Province Foundation for Returnees (No. 0713), the Natural Science Foundation of Shanxi Province (No. 2012011046-9), and the Foundation of Shanxi Normal University (SD2015CXXM-83), P. R. China.
Further Information

Publication History

Received: 27 January 2019

Accepted after revision: 11 March 2019

Publication Date:
03 April 2019 (online)


Abstract

A convenient synthetic method for vicinal tricarbonyl amides by the cross-coupling reaction of α-oxo acid chlorides with carbamoylsilanes is developed. The reaction tolerates a broad range of substituents on the amido nitrogen of carbamoylsilanes, and directly affords good yields of vicinal tricarbonyl amides under mild conditions without use of oxidants. The reaction of carbamoylsilanes with oxalyl chloride has also been explored, and is accompanied by decarbonylation to give vicinal tricarbonyl amides.

Supporting Information

 
  • References

    • 1a Adlington RM, Baldwin JE, Catterickand D, Pritchard GJ. J. Chem. Soc., Perkin Trans. 1 2001; 668
    • 1b Altuna-Urquijo M, Gehre A, Stanforth SP, Tarbit B. Tetrahedron 2009; 65: 975
    • 1c Wasserman HH, Rotello VM, Krause GB. Tetrahedron Lett. 1992; 33: 5419
    • 1d Wasserman HH, Chenand JH, Xia M. J. Am. Chem. Soc. 1999; 121: 1401
    • 1e Robach J, Baumeister J, Harms K, Koert U. Eur. J. Org. Chem. 2013; 662
    • 1f Loosley BC, Andersen RJ, Dake GR. Org. Lett. 2013; 15: 1152
    • 1g Robbach J, Harms K, Koert U. Eur. J. Org. Chem. 2014; 993
    • 1h Robbach J, Harms K, Koert U. Org. Lett. 2015; 17: 3122
    • 1i Yuki T, Yonekawa M, Matsumoto K, Sei Y, Tomita I, Endo T. Tetrahedron 2016; 65: 4783
    • 1j Yuki T, Yonekawa M, Furusho Y, Sei Y, Tomita I, Endo T. Tetrahedron 2016; 65: 2868
    • 2a Wasserman HH, Rotello VM. J. Org. Chem. 1989; 54: 2785
    • 2b Jones TK, Mills SG, Reamer RA, Askin D, Desmond R, Volante RP, Shinkai I. J. Am. Chem. Soc. 1989; 111: 1157
    • 2c Tanaka H, Kuroda A, Marusawa H, Hatanaka H, Kino T, Goto T, Hashimoto M, Taga T. J. Am. Chem. Soc. 1987; 109: 5031
    • 2d Matsushita K, Suzuki K, Ohmori K. Synlett 2017; 28: 944
    • 3a Rubin MB, Gleiter R. Chem. Rev. 2000; 100: 1121
    • 3b Wasserman HH, Parr J. Acc. Chem. Res. 2004; 37: 687
    • 3c Batchelor MJ, Gillespie RJ, Golec JM. C, Hedgecoch CJ. R. Tetrahedron Lett. 1993; 34: 167
    • 3d Wasserman HH, Pichett JE. J. Am. Chem. Soc. 1982; 104: 4695
    • 3e Asahara H, Nishiwaki N. J. Org. Chem. 2014; 79: 11735
    • 3f Lai JH, Pham H, Hangauer DG. J. Org. Chem. 1996; 61: 1872
    • 3g Santos MS, Coelho F. RSC Adv. 2012; 2: 3237
    • 3h Wasserman HH, Ennis DS, Power PL, Ross MJ, Gomes B. J. Org. Chem. 1993; 58: 4785
    • 3i Robbach J, Baumeister J, Harms K, Koert U. Eur. J. Org. Chem. 2013; 662
    • 3j Hoffman RV, Kim HO, Wilson AL. J. Org. Chem. 1990; 55: 2820
    • 3k Mahran MR, Abdou WM, Sidky MM, Wamhoff H. Synthesis 1987; 506
    • 3l Lee K, Im JM. Tetrahedron Lett. 2001; 42: 1539
    • 4a Baranac-Stojanovic M, Markovic R, Stojanovic M. Tetrahedron 2011; 67: 8000
    • 4b Wang L.-Z, Li H.-L, Ge L.-S, An X.-L, Zhang Z.-G, Luo X, Fossey JS, Deng W.-P. J. Org. Chem. 2014; 79: 1156
    • 4c Wang L.-Z, An X.-L, Ge L.-S, Jin J.-H, Luo X.-Y, Deng W.-P. Tetrahedron 2014; 70: 3788
    • 4d Sivan A, Deepth A. Tetrahedron Lett. 2014; 55: 1890
    • 4e Cui J, Duan Y.-N, Yu J, Zhang C. Org. Chem. Front. 2016; 3: 1686
    • 4f Liu Y.-Y, Zhang Z.-G, Wan Y.-M, Zhang G.-S, Li Z.-L, Bi J.-G, Ma N.-N, Liu T.-X, Liu Q.-F. J. Org. Chem. 2017; 82: 3901
    • 5a Tong W.-T, Liu H, Chen J.-X. Tetrahedron Lett. 2015; 56: 1335
    • 5b Liu H, Guo Q.-L, Chen J.-X. Tetrahedron Lett. 2015; 56: 5747
    • 5c Guo Q.-L, Wen X.-P, Chen J.-X. Tetrahedron 2016; 72: 8117
    • 6a Cao P, Wen X.-P, Chen J.-X. Synlett 2017; 28: 353
    • 6b Li W.-D, Han Y.-L, Chen J.-X. Tetrahedron 2017; 73: 5813
    • 6c Yao Y, Li W.-D, Tong W.-T, Chen J.-X. Chin. J. Org. Chem. 2015; 35: 223
    • 6d Li W.-D, Liu Y.-H, Chen J.-X. Tetrahedron Lett. 2015; 56: 4328
    • 6e Yao Y, Li W.-D, Chen J.-X. Chin. J. Org. Chem. 2014; 34: 2124
    • 6f Chen X.-J, Chen J.-X. Mendeleev Commun. 2013; 23: 106
    • 7a Zhang W.-J, Han S.-H, Chen J.-X. Synth. Commun. 2017; 47: 704
    • 7b Tong W.-T, Cao P, Liu Y.-H, Chen J.-X. J. Org. Chem. 2017; 82: 11603
    • 7c Wen X.-P, Han Y.-L, Chen J.-X. RSC Adv. 2017; 7: 45107
    • 7d Zhang W.-J, Cao P, Guo Q.-L, Chen J.-X. Curr. Org. Synth. 2017; 14: 1067
  • 8 For the preparation of the carbamoylsilanes, see: Cunico RF, Chen J.-X. Synth. Commun. 2003; 33: 1963
  • 9 Yonekawa M, Furusho Y, Sei Y, Takata T, Endo T. Tetrahedron 2013; 69: 4076
  • 10 Schöllkopf U, Beckhaus H. Angew. Chem., Int. Ed. Engl. 1976; 15: 293
  • 11 Davies SG, Ichihara O. Tetrahedron Lett. 1998; 39: 6045
  • 12 Yuki T, Yonekawa M, Furusho Y, Sei Y, Tomita I, Endo T. Tetrahedron 2016; 72: 2868
  • 14 Malmberg WD, Vob J, Weinschneider S. Liebigs Ann. Chem. 1983; 1694