Synthesis 2022; 54(10): 2494-2510
DOI: 10.1055/s-0040-1719882
paper

Significant Broadening of the Substrate Scope for the Hydrated Imidazoline Ring Expansion (HIRE) via the Use of Lithium Hexamethyldisilazide

Sergey Grintsevich
a   Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii prospect, Peterhof, Saint Petersburg, 198504, Russian Federation   URL: http://krasavin-group.org
,
Alexander Sapegin
a   Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii prospect, Peterhof, Saint Petersburg, 198504, Russian Federation   URL: http://krasavin-group.org
,
a   Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii prospect, Peterhof, Saint Petersburg, 198504, Russian Federation   URL: http://krasavin-group.org
b   Immanuel Kant Baltic Federal University, 14 A. Nevskogo ul., Kaliningrad, 236016, Russian Federation
› Author Affiliations
This research was supported by the Russian Science Foundation (Grant no. 19-75-30008).


Abstract

Substrates that are insufficiently activated towards the hydrated imidazoline ring expansion (HIRE) process have been previously found to deliver exclusively the products of aminoalkyl side-chain ring expansion. Attempted reversal of the process by thermal activation towards HIRE failed. We have found that for such problematic substrates the HIRE-type ring expansion can be effectively achieved by applying lithium hexamethyldisilazide (LHMDS) in toluene. LHMDS is thought to promote intramolecular transamidation, which leads to ring-expanded 10- and 11-membered heterocyclic products in modest to good yields. The process significantly broadens the substrate scope amenable to the HIRE strategy.

Supporting Information



Publication History

Received: 26 November 2021

Accepted after revision: 16 December 2021

Article published online:
10 February 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Zhao C, Ye Z, Ma Z.-x, Wildmaan SA, Blaszczyk SA, Hu L, Guizei IA, Tang W. Nat. Commun. 2019; 10: 4015
    • 2a Yet L. Chem. Rev. 2000; 100: 2963
    • 2b Molander GA. Acc. Chem. Res. 1998; 31: 603
    • 2c Illuminati G, Mandolini L. Acc. Chem. Res. 1981; 14: 95
    • 2d Galli C, Mandolini L. Eur. J. Org. Chem. 2000; 3117
    • 2e Sharma A, Appukkuttan P, Van der Eycken E. Chem. Commun. 2012; 48: 1623
    • 4a Reutskaya E, Sapegin A, Peintner S, Erdélyi M, Krasavin M. J. Org. Chem. 2021; 86: 5778
    • 4b Grintsevich S, Sapegin A, Reutskaya E, Peintner S, Erdélyi M, Krasavin M. Eur. J. Org. Chem. 2020; 5664
    • 4c Sapegin A, Osipyan A, Krasavin M. Org. Biomol. Chem. 2017; 15: 2906
    • 4d Osipyan A, Sapegin A, Novikov A, Krasavin M. J. Org. Chem. 2018; 83: 9707
    • 4e Grintsevich S, Sapegin A, Reutskaya E, Krasavin M. Tetrahedron Lett. 2019; 60: 20
  • 5 Grintsevich A, Sapegin A, Duszinska B, Bojarski AJ, Krasavin M. Synthesis 2022; 54: 658
  • 6 Lavit K, Reutskaya E, Grintsevich S, Sapegin A, Krasavin M. Tetrahedron Lett. 2020; 61: 152423
  • 7 Reutskaya E, Osipyan A, Sapegin A, Novikov A, Krasavin M. J. Org. Chem. 2019; 84: 1693
  • 8 Li G, Szostak M. Nat. Commun. 2018; 9: 4165
  • 10 Tryniszewski M, Bujok R, Gańczarczyk R, Wróbel Z. Synthesis 2020; 52: 3086
    • 11a Li G, Ji C.-L, Hong X, Szostak M. J. Am. Chem. Soc. 2019; 141: 11161
    • 11b Raman M, Li G, Szostak M. J. Org. Chem. 2019; 84: 12091
  • 12 Becerra-Figueroa L, Ojeda-Porras A, Gamba-Sanchez D. J. Org. Chem. 2014; 79: 4544
  • 13 Eldred SE, Stone DA, Gellman SH, Stahl SS. J. Am. Chem. Soc. 2003; 125: 3422
  • 14 Bon E, Bigg DC. H, Bertrand G. J. Org. Chem. 1994; 59: 4035
  • 15 Nguyen TB, Sorres J, Tran MQ, Ermolenko L, Al-Mourabit A. Org. Lett. 2012; 14: 3202