Synthesis 2022; 54(03): 705-710
DOI: 10.1055/s-0040-1720907
paper

Palladium-Catalyzed Desulfurative Hiyama Coupling of Thioureas to Achieve Amides via Selective C–N Bond Cleavage

Zhanyu He
a   School of Chemistry, South China Normal University, Guangzhou 510006, P. R. of China
,
Chu Yan
a   School of Chemistry, South China Normal University, Guangzhou 510006, P. R. of China
,
Mei Zhang
a   School of Chemistry, South China Normal University, Guangzhou 510006, P. R. of China
,
Majeed Irfan
a   School of Chemistry, South China Normal University, Guangzhou 510006, P. R. of China
,
Zijia Wang
a   School of Chemistry, South China Normal University, Guangzhou 510006, P. R. of China
,
Zhuo Zeng
a   School of Chemistry, South China Normal University, Guangzhou 510006, P. R. of China
b   Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 345 Lingling Road, Shanghai 200032, P. R. of China
› Author Affiliations
The authors gratefully acknowledge the support of Science and Technology Planning Project of Guangdong Province (2017A010103017), National Natural Science Foundation of China (21272080, 51703069), and Special Innovation Projects of Common Universities in Guangdong Province (20178S0182).


Abstract

Palladium-catalyzed Hiyama coupling of active thioureas via selective C–N bond cleavage is reported. Notably, the new approach employed active thioureas as coupling partners in the presence of arylsilanes to give amides in good yield. Further, this strategy, which utilized CuF2 as a key oxidant and activator, afforded various amide products under mild conditions and an easy to handle procedure without extra base.

Supporting Information



Publication History

Received: 03 August 2021

Accepted after revision: 13 September 2021

Article published online:
14 October 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Greenberg A, Breneman CM, Liebman JF. The Amide Amide Linkage: Structural Significance in Chemistry, Biochemistry, and Materials Science. Wiley; New York: 2000
  • 2 Brown DG, Boström J. J. Med. Chem. 2016; 59: 4443
    • 3a Allen CL, Williams JM. J. Chem. Soc. Rev. 2011; 40: 3405
    • 3b de Figueiredo RM, Suppo J.-S, Campagne J.-M. Chem. Rev. 2016; 116: 12029
    • 3c Dunetz JR, Magano J, Weisenburger GA. Org. Process Res. Dev. 2016; 20: 140
    • 3d Khan WU, Baharudin L, Choi J, Yip AC. K. ChemCatChem 2021; 13: 1
    • 3e Li G, Szostak M. Synthesis 2020; 52: 2579
    • 3f Ojeda-Porras A, Gamba-Sánchez D. J. Org. Chem. 2016; 81: 11548
    • 3g Todorovic M, Perrin DM. Pept. Sci. 2020; 112: e24210
    • 3h Valeur E, Bradley M. Chem. Soc. Rev. 2009; 38: 606
    • 4a Constable DJ. C, Dunn PJ, Hayler JD, Humphrey GR, Leazer JJ. L, Linderman RJ, Lorenz K, Manley J, Pearlman BA, Wells A, Zaks A, Zhang TY. Green Chem. 2007; 9: 411
    • 4b Wu X, Hu L. J. Org. Chem. 2007; 72: 765
    • 5a Buchspies J, Szostak M, Li G, Szostak M. Catalysts 2019; 9: 2579
    • 5b Takise R, Muto K, Yamaguchi J. Chem. Soc. Rev. 2017; 46: 5864
  • 6 Ben Halima T, Vandavasi JK, Shkoor M, Newman SG. ACS Catal. 2017; 7: 2176
    • 7a Li G, Zhou T, Poater A, Cavallo L, Nolan SP, Szostak M. Catal. Sci. Technol. 2020; 10: 710
    • 7b Shi S, Nolan SP, Szostak M. Acc. Chem. Res. 2018; 51: 2589
    • 7c Shi S, Szostak M. Chem. Commun. 2017; 53: 10584
    • 7d Zhou T, Li G, Nolan SP, Szostak M. Org. Lett. 2019; 21: 3304
  • 8 Su J, Li W, Li X, Xu J, Song Q. ChemCatChem 2020; 12: 5664
  • 9 Shakeel A, Altaf AJ. Drug Des. Med. Chem. 2016; 2: 10
  • 10 Hargrave KD, Hess FK, Oliver JT. J. Med. Chem. 1983; 26: 1158
  • 11 Sondhi SM, Sharma VK, Singhal N, Verma RP, Shukla R, Raghubir R, Dubey MP. Phosphorus Sulfur Silicon Relat. Elem. 2000; 156: 21
  • 12 Loev B, Bender PE, Bowman H, Helt A, McLean R, Jen T. J. Med. Chem. 1972; 15: 1024
  • 13 Rosove MH. West. J. Med. 1977; 126: 339
  • 14 Mahanta N, Szantai-Kis DM, Petersson EJ, Mitchell DA. ACS Chem. Biol. 2019; 14: 142
  • 15 Li G, Ma S, Szostak M. Trends Chem. 2020; 2: 914
    • 16a Cui M, Chen Z, Liu T, Wang H, Zeng Z. Tetrahedron Lett. 2017; 58: 3819
    • 16b Cui M, Wu H, Jian J, Wang H, Liu C, Daniel S, Zeng Z. Chem. Commun. 2016; 52: 12076
    • 16c Guo W, Huang J, Wu H, Liu T, Luo Z, Jian J, Zeng Z. Org. Chem. Front. 2018; 5: 2950
    • 16d He Z, Wang Z, Ru J, Wang Y, Liu T, Zeng Z. Adv. Synth. Catal. 2020; 362: 5794
    • 16e Jian J, He Z, Zhang Y, Liu T, Liu L, Wang Z, Wang H, Wang S, Zeng Z. Eur. J. Org. Chem. 2020; 4176
    • 16f Jian J, Wang Z, Chen L, Gu Y, Miao L, Liu Y, Zeng Z. Synthesis 2019; 51: 4078
    • 16g Luo Z, Liu T, Guo W, Wang Z, Huang J, Zhu Y, Zeng Z. Org. Process Res. Dev. 2018; 22: 1188
    • 16h Luo Z, Wu H, Li Y, Chen Y, Nie J, Lu S, Zhu Y, Zeng Z. Adv. Synth. Catal. 2019; 361: 4117
    • 16i Luo Z, Xiong L, Liu T, Zhang Y, Lu S, Chen Y, Guo W, Zhu Y, Zeng Z. J. Org. Chem. 2019; 84: 10559
    • 16j Wu H, Guo W, Daniel S, Li Y, Liu C, Zeng Z. Chem. Eur. J. 2018; 24: 3444
    • 16k Wu H, Li Y, Cui M, Jian J, Zeng Z. Adv. Synth. Catal. 2016; 358: 3876
    • 16l Wu H, Liu T, Cui M, Li Y, Jian J, Wang H, Zeng Z. Org. Biomol. Chem. 2017; 15: 536
    • 16m Xiong L, Deng R, Liu T, Luo Z, Wang Z, Zhu X.-F, Wang H, Zeng Z. Adv. Synth. Catal. 2019; 361: 5383
    • 16n Zhang Y, Wang Z, Tang Z, Luo Z, Wu H, Liu T, Zhu Y, Zeng Z. Eur. J. Org. Chem. 2020; 1620
  • 17 Mai S, Li W, Li X, Zhao Y, Song Q. Nat. Commun. 2019; 10: 5709
  • 18 Nareddy P, Jordan F, Szostak M. Chem. Sci. 2017; 8: 3204
  • 19 Qi Z, Li S.-S, Li L, Qin Q, Yang L.-M, Liang Y.-K, Kang Y, Zhang X.-Z, Ma A.-J, Peng J.-B. Chem. Asian J. 2021; 16: 503
  • 20 Zhou S, Junge K, Addis D, Das S, Beller M. Angew. Chem. Int. Ed. 2009; 48: 9507
  • 21 Yi X, Lei S, Liu W, Che F, Yu C, Liu X, Wang Z, Zhou X, Zhang Y. Org. Lett. 2020; 22: 4583
  • 22 Voronkoy MG, Tsyendorzhieva IP, Rakhlin VI. Russ. J. Org. Chem. 2008; 44: 481
  • 23 Wang Y, Zhu D, Tang L, Wang S, Wang Z. Angew. Chem. Int. Ed. 2011; 50: 8917
  • 24 Baroudi A, Alicea J, Flack P, Kirincich J, Alabugin IV. J. Org. Chem. 2011; 76: 1521