Synthesis 2024; 56(10): 1549-1562
DOI: 10.1055/s-0043-1763620
short review

Pyrazolopyridine Ligands in Transition-Metal-Catalyzed C–C and C–Heteroatom Bond-Forming Reactions

,
Jung Min Joo
This research was supported by the National Research Foundation of Korea (NRF-2022R1A2C2008629 and NRF-2022R1A4A2000778).


Abstract

Pyrazole-substituted pyridines have emerged as versatile bidentate ligands in transition-metal catalysis, providing opportunities to fine-tune reactivity and selectivity beyond what conventional bipyridine ligands can achieve. This review focuses on two representative pyrazolopyridine ligands: 2-(1H-pyrazol-1-yl)pyridine (1-PzPy) and 2-(1H-pyrazol-3-yl)pyridine (3-PzPy). The 1-PzPy series, characterized by a pyrazole ring serving as a weakly coordinating Lewis basic ligand, offer flexibility in ligand binding. Alternatively, the 3-PzPy series provide both L2- and LX-type binding modes, functioning as hydrogen bond donors and σ-donors, respectively. The structural diversity of pyrazolopyridine ligands enables the development of various synthetic strategies, facilitating cross-coupling, cycloaddition, photocatalytic, and asymmetric reactions. This review highlights the roles of these ligands in advancing transition-metal-catalyzed C–C and C–heteroatom bond-forming reactions.

1 Introduction

2 Synthesis of Pyrazolopyridine Ligands

3 Applications of 1-PzPy Ligands

4 Applications of 3-PzPy Ligands

5 Conclusion



Publication History

Received: 27 September 2023

Accepted after revision: 20 October 2023

Article published online:
28 November 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 2a Togni A, Venanzi LM. Angew. Chem. Int. Ed. 1994; 33: 497
    • 2b Uyeda C, Farley CM. Acc. Chem. Res. 2021; 54: 3710
  • 3 Wang D, Weinstein AB, White PB, Stahl SS. Chem. Rev. 2018; 118: 2636
  • 4 Kaes C, Katz A, Hosseini MW. Chem. Rev. 2000; 100: 3553
    • 5a Rothfuss H, Knöfel ND, Tzvetkova P, Michenfelder NC, Baraban S, Unterreiner A.-N, Roesky PW, Barner-Kowollik C. Chem. Eur. J. 2018; 24: 17475
    • 5b Khatua H, Das S, Patra S, Chattopadhyay B. Synthesis 2023; 55: 3434
  • 6 Constable EC, Steel PJ. Coord. Chem. Rev. 1989; 93: 205
    • 7a Steel PJ, LaHousse F, Lerner D, Marzin C. Inorg. Chem. 1983; 22: 1488
    • 7b Jameson DL, Blaho JK, Kruger KT, Goldsby KA. Inorg. Chem. 1989; 28: 4312
    • 8a Yu Z, Hagfeldt A, Sun L. Coord. Chem. Rev. 2020; 406: 213143
    • 8b Bizzarri C, Spuling E, Knoll DM, Volz D, Bräse S. Coord. Chem. Rev. 2018; 373: 49
    • 9a Burschka J, Dualeh A, Kessler F, Baranoff E, Cevey-Ha N.-L, Yi C, Nazeeruddin MK, Grätzel M. J. Am. Chem. Soc. 2011; 133: 18042
    • 9b Burschka J, Kessler F, Nazeeruddin MK, Grätzel M. Chem. Mater. 2013; 25: 2986
    • 10a He L, Duan L, Qiao J, Wang R, Wei P, Wang L, Qiu Y. Adv. Funct. Mater. 2008; 18: 2123
    • 10b He L, Duan L, Qiao J, Zhang D, Wang L, Qiu Y. Chem. Commun. 2011; 47: 6467
  • 11 Lin W.-S, Kuwata S. Molecules 2023; 28: 3529
    • 12a Pinilla C, Salamanca V, Lledós A, Albéniz AC. ACS Catal. 2022; 12: 14527
    • 12b Villalba F, Albéniz AC. Adv. Synth. Catal. 2021; 363: 4795
    • 12c Salamanca V, Albéniz AC. Org. Chem. Front. 2021; 8: 1941
    • 12d Salamanca V, Toledo A, Albéniz AC. J. Am. Chem. Soc. 2018; 140: 17851
    • 13a Wang Z, Hu L, Chekshin N, Zhuang Z, Qian S, Qiao JX, Yu J.-Q. Science 2021; 374: 1281
    • 13b Sheng T, Kang G, Zhuang Z, Chekshin N, Wang Z, Hu L, Yu J.-Q. J. Am. Chem. Soc. 2023; 145: 20951
  • 14 Yun SJ, Kim J, Kang E, Jung H, Kim HT, Kim M, Joo JM. ACS Catal. 2023; 13: 4042
  • 15 Kim HT, Kang E, Kim M, Joo JM. Org. Lett. 2021; 23: 3657
  • 16 Cano R, Ramón DJ, Yus M. J. Org. Chem. 2011; 76: 654
  • 17 Wang F, Schwabacher AW. Tetrahedron Lett. 1999; 40: 4779
  • 18 He J, Bai Z.-Q, Yuan P.-F, Wu L.-Z, Liu Q. ACS Catal. 2021; 11: 446
  • 19 Skubi KL, Kidd JB, Jung H, Guzei IA, Baik M.-H, Yoon TP. J. Am. Chem. Soc. 2017; 139: 17186
  • 20 Sambiagio C, Marsden SP, Blacker AJ, McGowan PC. Chem. Soc. Rev. 2014; 43: 3525
  • 21 Liu H.-Y, Yu Z.-T, Yuan Y.-J, Yu T, Zou Z.-G. Tetrahedron 2010; 66: 9141
  • 22 Zhao Y, Wang X, Kaneyama R, Kodama K, Hirose T. ChemistrySelect 2020; 5: 4152
  • 23 Zhao Y, Wang X, Kodama K, Hirose T. ChemistrySelect 2018; 3: 12620
  • 24 Xue J.-Y, Li J.-C, Li H.-X, Li H.-Y, Lang J.-P. Tetrahedron 2016; 72: 7014
  • 25 Shen L, Huang S, Nie Y, Lei F. Molecules 2013; 18: 1602
    • 26a Das T, Chakraborty A, Sarkar A. Tetrahedron Lett. 2014; 55: 5174
    • 26b Das T, Chakraborty A, Sarkar A. Tetrahedron Lett. 2014; 55: 7198
  • 27 Yousuf M, Das T, Adhikari S. New J. Chem. 2015; 39: 8763
  • 28 Kwak H, Kang E, Song JY, Kang G, Joo JM. Adv. Synth. Catal. 2021; 363: 4883
  • 29 Jeon JE, Jeong S, Kwak H, Joo JM. Synthesis 2023; 55: 3652
  • 30 Kang E, Jeon JE, Jeong S, Kim HT, Joo JM. Chem. Commun. 2021; 57: 11791
  • 31 Umeda N, Hirano K, Satoh T, Shibata N, Sato H, Miura M. J. Org. Chem. 2011; 76: 13
  • 32 Müller S, Lee W, Song JY, Kang E, Joo JM. Chem. Commun. 2022; 58: 10809
  • 33 Kim J, Joo JM. Bull. Korean Chem. Soc. 2022; 43: 1173
    • 34a Cook AK, Sanford MS. J. Am. Chem. Soc. 2015; 137: 3109
    • 34b Cook AK, Emmert MH, Sanford MS. Org. Lett. 2013; 15: 5428
    • 34c Emmert MH, Cook AK, Xie YJ, Sanford MS. Angew. Chem. Int. Ed. 2011; 50: 9409
    • 35a Uttry A, Mal S, van Gemmeren M. J. Am. Chem. Soc. 2021; 143: 10895
    • 35b Farizyan M, Mondal A, Mal S, Deufel F, van Gemmeren M. J. Am. Chem. Soc. 2021; 143: 16370
  • 36 Bhattacharya T, Ghosh A, Maiti D. Chem. Sci. 2021; 12: 3857
  • 37 He J, Liu Q. Synthesis 2021; 54: 925
  • 38 Satake A, Nakata T. J. Am. Chem. Soc. 1998; 120: 10391
  • 39 Montoya V, Pons J, Branchadell V, Garcia-Antón J, Solans X, Font-Bardía M, Ros J. Organometallics 2008; 27: 1084
  • 40 Sie M.-H, Hsieh Y.-H, Tsai Y.-H, Wu J.-R, Chen S.-J, Vijaya Kumar P, Lii J.-H, Lee HM. Organometallics 2010; 29: 6473
  • 41 Lee J.-Y, Cheng P.-Y, Tsai Y.-H, Lin G.-R, Liu S.-P, Sie M.-H, Lee HM. Organometallics 2010; 29: 3901
    • 42a Chen L.-A, Xu W, Huang B, Ma J, Wang L, Xi J, Harms K, Gong L, Meggers E. J. Am. Chem. Soc. 2013; 135: 10598
    • 42b Chen L.-A, Tang X, Xi J, Xu W, Gong L, Meggers E. Angew. Chem. Int. Ed. 2013; 52: 14021
    • 42c Ma Q, Gong L, Meggers E. Org. Chem. Front. 2016; 3: 1319
    • 42d Liu J, Gong L, Meggers E. Tetrahedron Lett. 2015; 56: 4653
    • 42e Huang K, Ma Q, Shen X, Gong L, Meggers E. Asian J. Org. Chem. 2016; 5: 1198
    • 43a Ma J, Ding X, Hu Y, Huang Y, Gong L, Meggers E. Nat. Commun. 2014; 5: 4531
    • 43b Hu Y, Zhou Z, Gong L, Meggers E. Org. Chem. Front. 2015; 2: 968
    • 44a Ding X, Lin H, Gong L, Meggers E. Asian J. Org. Chem. 2015; 4: 434
    • 44b Ding X, Tian C, Hu Y, Gong L, Meggers E. Eur. J. Org. Chem. 2016; 887
  • 45 Zheng J, Swords WB, Jung H, Skubi KL, Kidd JB, Meyer GJ, Baik M.-H, Yoon TP. J. Am. Chem. Soc. 2019; 141: 13625
  • 46 Caron A, Morin É, Collins SK. ACS Catal. 2019; 9: 9458
  • 47 Tashima N, Ohta S, Kuwata S. Faraday Discuss. 2019; 220: 364