Subscribe to RSS
DOI: 10.1055/a-1948-3234
Phosphine-Catalyzed Z-Selective Carbofluorination of Alkynoates Bearing an N-Heteroarene Unit
This work was supported by the Japan Society for the Promotion of Science (JSPS KAKENHI, Grant Number JP21H04682) from MEXT, Japan.
Abstract
We report herein on the phosphine-catalyzed Z-selective carbofluorination of alkynoates bearing an N-heteroarene unit, by using acyl fluorides as bifunctional reagents. This reaction proceeds through a pentacoordinate fluorophosphorane(V) intermediate, resulting in the formation of a C–F bond by a ligand coupling process. The Z-selectivity is attributed to the thermodynamic stabilization of a Z-isomer by orbital interactions between lone pair electrons of an N-heteroarene and the π* orbital of a carbonyl group.
Key words
phosphine redox catalysis - fluorophosphorane - carbofluorination - monofluoroalkene - n→π* interactionSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1948-3234.
- Supporting Information
Publication History
Received: 27 July 2022
Accepted: 21 September 2022
Accepted Manuscript online:
21 September 2022
Article published online:
27 October 2022
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Müller K, Faeh C, Diederich F. Science 2007; 317: 1881
- 1b Purser S, Moore PR, Swallow S, Gouverneur V. Chem. Soc. Rev. 2008; 37: 320
- 1c Wang J, Sánchez-Roselló M, Aceña JL, del Pozo C, Sorochinsky AE, Fustero S, Soloshonok VA, Liu H. Chem. Rev. 2014; 114: 2432
- 1d Johnson BM, Shu Y.-Z, Zhuo X, Meanwell NA. J. Med. Chem. 2020; 63: 6315
- 2a Urban JJ, Tillman BG, Cronin WA. J. Phys. Chem. A 2006; 110: 11120
- 2b Nadon J.-F, Rochon K, Grastielleur S, Langlois G, Dao TT. H, Blais V, Guérin B, Gendron L, Dory YL. ACS Chem. Neurosci. 2017; 8: 40
- 3a Champagne PA, Desroches J, Hamel J.-D, Vandamme M, Paquin J.-F. Chem. Rev. 2015; 115: 9073
- 3b Drouin M, Hamel J.-D, Paquin J.-F. Synthesis 2018; 50: 881
- 3c Zhang X.-J, Cheng Y.-M, Zhao X.-W, Cao Z.-Y, Xiao X, Xu Y. Org. Chem. Front. 2021; 8: 2315
- 4a Peng H, Liu G. Org. Lett. 2011; 13: 772
- 4b Zhang J, Wang H, Ren S, Zhang W, Liu Y. Org. Lett. 2015; 17: 2920
- 4c Tian Q, Chen B, Zhang G. Green Chem. 2016; 18: 6236
- 5 Yu X, Meng Q.-Y, Daniliuc CG, Studer A. J. Am. Chem. Soc. 2022; 144: 7072
- 6 Fujimoto H, Kodama T, Yamanaka M, Tobisu M. J. Am. Chem. Soc. 2020; 142: 17323
- 7a Fujimoto H, Kusano M, Kodama T, Tobisu M. Org. Lett. 2020; 22: 2293
- 7b Ponce-de-León J, Infante R, Espinet P. Chem. Commun. 2021; 57: 5458
- 7c Fujimoto H, Kusano M, Kodama T, Tobisu M. J. Am. Chem. Soc. 2021; 143: 18394
- 8 Wang W, Wang Y, Zheng L, Qiao Y, Wei D. ChemistrySelect 2017; 2: 5266
- 9 Newberry RW, Raines RT. Acc. Chem. Res. 2017; 50: 1838
- 10a Blanco S, López JC. J. Phys. Chem. Lett. 2018; 9: 4632
- 10b Blanco S, Macario A, López JC. Phys. Chem. Chem. Phys. 2019; 21: 20566
- 11 Neveselý T, Molloy JJ, McLaughlin C, Brüss L, Daniliuc CG, Gilmour R. Angew. Chem. Int. Ed. 2022; 61: e202113600
- 12 Wagner CJ, Salisbury EA, Schoonover EJ, VanderRoest JP, Johnson JB. Tetrahedron Lett. 2021; 73: 153132