Synthesis 2023; 55(06): 899-906
DOI: 10.1055/a-1948-3234
special topic
Synthetic Advancements Enabled by Phosphorus Redox Chemistry

Phosphine-Catalyzed Z-Selective Carbofluorination of Alkynoates Bearing an N-Heteroarene Unit

Hayato Fujimoto
a   Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
b   Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
,
Shisato Yamamura
a   Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
,
Namiki Takenaka
a   Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
,
Mamoru Tobisu
a   Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
b   Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
› Author Affiliations
This work was supported by the Japan Society for the Promotion of Science (JSPS KAKENHI, Grant Number JP21H04682) from MEXT, Japan­.


Abstract

We report herein on the phosphine-catalyzed Z-selective carbofluorination of alkynoates bearing an N-heteroarene unit, by using acyl fluorides as bifunctional reagents. This reaction proceeds through a pentacoordinate fluorophosphorane(V) intermediate, resulting in the formation of a C–F bond by a ligand coupling process. The Z-selectivity is attributed to the thermodynamic stabilization of a Z-isomer by orbital interactions between lone pair electrons of an N-heteroarene and the π* orbital of a carbonyl group.

Supporting Information



Publication History

Received: 27 July 2022

Accepted: 21 September 2022

Accepted Manuscript online:
21 September 2022

Article published online:
27 October 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Müller K, Faeh C, Diederich F. Science 2007; 317: 1881
    • 1b Purser S, Moore PR, Swallow S, Gouverneur V. Chem. Soc. Rev. 2008; 37: 320
    • 1c Wang J, Sánchez-Roselló M, Aceña JL, del Pozo C, Sorochinsky AE, Fustero S, Soloshonok VA, Liu H. Chem. Rev. 2014; 114: 2432
    • 1d Johnson BM, Shu Y.-Z, Zhuo X, Meanwell NA. J. Med. Chem. 2020; 63: 6315
    • 2a Urban JJ, Tillman BG, Cronin WA. J. Phys. Chem. A 2006; 110: 11120
    • 2b Nadon J.-F, Rochon K, Grastielleur S, Langlois G, Dao TT. H, Blais V, Guérin B, Gendron L, Dory YL. ACS Chem. Neurosci. 2017; 8: 40
    • 3a Champagne PA, Desroches J, Hamel J.-D, Vandamme M, Paquin J.-F. Chem. Rev. 2015; 115: 9073
    • 3b Drouin M, Hamel J.-D, Paquin J.-F. Synthesis 2018; 50: 881
    • 3c Zhang X.-J, Cheng Y.-M, Zhao X.-W, Cao Z.-Y, Xiao X, Xu Y. Org. Chem. Front. 2021; 8: 2315
    • 4a Peng H, Liu G. Org. Lett. 2011; 13: 772
    • 4b Zhang J, Wang H, Ren S, Zhang W, Liu Y. Org. Lett. 2015; 17: 2920
    • 4c Tian Q, Chen B, Zhang G. Green Chem. 2016; 18: 6236
  • 5 Yu X, Meng Q.-Y, Daniliuc CG, Studer A. J. Am. Chem. Soc. 2022; 144: 7072
  • 6 Fujimoto H, Kodama T, Yamanaka M, Tobisu M. J. Am. Chem. Soc. 2020; 142: 17323
    • 7a Fujimoto H, Kusano M, Kodama T, Tobisu M. Org. Lett. 2020; 22: 2293
    • 7b Ponce-de-León J, Infante R, Espinet P. Chem. Commun. 2021; 57: 5458
    • 7c Fujimoto H, Kusano M, Kodama T, Tobisu M. J. Am. Chem. Soc. 2021; 143: 18394
  • 8 Wang W, Wang Y, Zheng L, Qiao Y, Wei D. ChemistrySelect 2017; 2: 5266
  • 9 Newberry RW, Raines RT. Acc. Chem. Res. 2017; 50: 1838
    • 10a Blanco S, López JC. J. Phys. Chem. Lett. 2018; 9: 4632
    • 10b Blanco S, Macario A, López JC. Phys. Chem. Chem. Phys. 2019; 21: 20566
  • 11 Neveselý T, Molloy JJ, McLaughlin C, Brüss L, Daniliuc CG, Gilmour R. Angew. Chem. Int. Ed. 2022; 61: e202113600
  • 12 Wagner CJ, Salisbury EA, Schoonover EJ, VanderRoest JP, Johnson JB. Tetrahedron Lett. 2021; 73: 153132