Synthesis 2024; 56(05): 758-762
DOI: 10.1055/a-2222-3695
psp

An Improved Protocol for the Synthesis of Carbonyl Sulfoxonium Ylides

,
,
This work was supported by Sao Paulo State Research Foundation – FAPESP (fellowships for J.A.M.V. grand number 2021/06549-0 and financial­ support to A.C.B.B. grand number 2023/02675 and 2020/15230-5) and National Council for Scientific and Technological Development (CNPq) (140022/2021-0).


Abstract

An improved protocol for the synthesis of carbonyl sulfoxonium ylides from the reaction between trimethylsulfoxonium iodide and reactive carboxylic acid derivatives is described. In a one-pot, two-step sequence, these sulfoxonium ylides could be obtained in up to 81% yield with shorter reaction times and lesser equivalent numbers of the reactants when compared to the previous methods. These improvements make the method less expensive and ideal for larger scale preparations as well, not necessitating excess of the trialkylsulfoxonium salt starting material. An easier workup procedure, avoiding solvent extraction, is also discussed and facilitates product isolation.

Supporting Information



Publication History

Received: 28 September 2023

Accepted after revision: 04 December 2023

Accepted Manuscript online:
04 December 2023

Article published online:
18 January 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Corey EJ, Chaykovsky M. J. Am. Chem. Soc. 1962; 84: 867
  • 2 Corey EJ, Chaykovsky M. J. Am. Chem. Soc. 1962; 84: 3782
  • 3 Corey EJ, Chaykovsky M. J. Am. Chem. Soc. 1964; 86: 1640
  • 4 Corey EJ, Chaykovsky M. J. Am. Chem. Soc. 1965; 87: 1353
  • 5 Caiuby CA. D, Furniel LG, Burtoloso AC. B. Chem. Sci. 2022; 13: 1192
  • 6 Burtoloso AC. B, Vargas JA. M, de Jesus MP, Echemendía R. Heterocycles from Carbenes and Nitrenes . In Topics in Heterocyclic Chemistry, Vol. 59. Doyle MP, Xu X. Springer; Cham: 2023: 63
  • 7 König H, Metzger H. Tetrahedron Lett. 1964; 3003
  • 8 König H, Metzger H. Chem. Ber. 1965; 98: 3733
  • 9 Baldwin JE, Adlington RM, Godfrey CR. A, Gollins DW, Smith ML, Russel AT. Synlett 1993; 51
  • 10 Caiuby CA. D, de Jesus MP, Burtoloso AC. B. J. Org. Chem. 2020; 85: 7433
  • 11 Chen G, Zhang X, Jia R, Li B, Fan X. Adv. Synth. Catal. 2018; 360: 3781
  • 12 Gallo RD. C, Ahmad A, Metzker G, Burtoloso AC. B. Chem. Eur. J. 2017; 23: 16980
  • 13 Day DP, Vargas JA. M, Burtoloso AC. B. Chem. Rec. 2021; 21: 1
  • 14 Vaitla J, Bayer A, Hopmann KH. Angew. Chem. Int. Ed. 2017; 56: 4277
  • 15 Wang D, Schwinden MD, Radesca L, Patel B, Kronenthal D, Huang MH, Nugent WA. J. Org. Chem. 2004; 69: 1629
  • 16 Dias RM. P, Burtoloso AC. B. Org. Lett. 2016; 18: 3034
  • 17 Talero AG, Martins BS, Burtoloso AC. B. Org. Lett. 2018; 20: 7206
  • 18 Vaitla J, Bayer A, Hopmann KH. Angew. Chem. Int. Ed. 2017; 56: 4277
  • 19 Barday M, Janot C, Halcovitch NR, Muir J, Aïsaa C. Angew. Chem. Int. Ed. 2017; 56: 13117
  • 20 Hoang GL, Ellman JA. Tetrahedron 2018; 74: 3318
  • 21 Zhang SS, Xie H, Shu B, Che T, Wang XT, Peng D, Yang F, Zhang L. Chem. Commun. 2020; 56: 423
  • 22 Xu Y, Yang X, Zhou X, Kong L, Li X. Org. Lett. 2017; 19: 4307
  • 23 Clare D, Dobson BC, Inglesby PA, Aïssa C. Angew. Chem. Int. Ed. 2019; 58: 16198
  • 24 Day DP, Vargas JA. M, Burtoloso AC. B. J. Org. Chem. 2021; 86: 12427
  • 25 Echemendía R, de Oliveira KT, Burtoloso AC. B. Org. Lett. 2022; 24: 6386