Synthesis
DOI: 10.1055/a-2232-8882
short review

Recent Developments on the Earth-Abundant-Metal-Catalyzed α,β-Dehydrogenation of Carbonyl Compounds

Peng-Fei Dai
a   Department of Nuclear Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P. R. of China
b   Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. of China
,
Qiang-Qiang Li
b   Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. of China
,
Jian-Ping Qu
c   Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. of China
,
Yan-Biao Kang
b   Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. of China
› Author Affiliations
We thank the Natural Science Foundation of Anhui Province (No. 2108085QH355), the Scientific Research Foundation of the Higher Education Institutions of Anhui Province (No. 2022AH051165), and the Cultivate Youth Project of The First Affiliated Hospital of Anhui Medical University (No. 2021kj05) for financial support.


Abstract

α,β-Unsaturated carbonyl compounds are versatile building blocks in modern organic synthetic chemistry. In recent decades, various approaches have been established to access to these products, such as halogenation–dehydrohalogenation methods, organosulfur methods, organoselenium methods, earth-abundant-metal-catalyzed methods, precious-metal-catalyzed methods, and metal-free methods, etc. Among these, earth-abundant-metal-catalyzed methods (i.e., iron, cobalt, nickel, copper) continue to attract the attention of chemists because they are readily available, inexpensive, and environmentally friendly. Presently, there are only a few reviews covering earth-abundant-metal-catalyzed α,β-dehydrogenations. Hence, the aim of this short review is to provide a detailed update on the recent developments on earth-abundant-metal-catalyzed α,β-dehydrogenations of carbonyl compounds.

1 Introduction

2 Iron-Catalyzed Dehydrogenation

3 Cobalt-Catalyzed Dehydrogenation

4 Nickel-Catalyzed Dehydrogenation

5 Copper-Catalyzed Dehydrogenation

6 Conclusion



Publication History

Received: 24 November 2023

Accepted after revision: 19 December 2023

Accepted Manuscript online:
19 December 2023

Article published online:
25 January 2024

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Xavier NM, Rauter AP. Carbohydr. Res. 2008; 343: 1523
    • 1b Harutyunyan SR, den Hartog T, Geurts K, Minnaard AJ, Feringa BL. Chem. Rev. 2008; 108: 2824
    • 1c Benigni R, Bossa C. Chem. Rev. 2011; 111: 2507
    • 1d Keiko NA, Vchislo NV. Asian J. Org. Chem. 2016; 5: 1169
    • 1e Marcos V, Aleman J. Chem. Soc. Rev. 2016; 45: 6812
    • 1f Rosa GP, Seca AM. L, do Carmo Barreto M, Pinto DC. G. A. ACS Sustainable Chem. Eng. 2017; 5: 7467
    • 1g Jackson PA, Widen JC, Harki DA, Brummond KM. J. Med. Chem. 2017; 60: 839
    • 1h Zhuang C, Zhang W, Sheng C, Zhang W, Xing C, Miao Z. Chem. Rev. 2017; 117: 7762
    • 1i Brenninger C, Jolliffe JD, Bach T. Angew. Chem. Int. Ed. 2018; 57: 14338
    • 1j Desimoni G, Faita G, Quadrelli P. Chem. Rev. 2018; 118: 2080
    • 1k Zheng K, Liu X, Feng X. Chem. Rev. 2018; 118: 7586
    • 1l Drosik OK, Suwinski JW. Curr. Org. Chem. 2018; 22: 345
    • 1m Gehringer M, Laufer SA. J. Med. Chem. 2019; 62: 5673
    • 2a Stahl SS, Diao T. Oxidation Adjacent to C=X Bonds by Dehydrogenation . In Comprehensive Organic Synthesis II, Vol. 7. Knochel P, Molander GA. Elsevier; Amsterdam: 2014: 178-212
    • 2b Wang D, Weinstein AB, White PB, Stahl SS. Chem. Rev. 2018; 118: 2636
    • 2c Le Bras J, Muzart J. Org. React. 2019; 1
    • 3a McEntee ME, Pinder AR. J. Chem. Soc. 1957; 4419
    • 3b Hussey CW. T, Pinder AR. J. Chem. Soc. 1961; 3525
    • 3c Wang Z, Yin G, Qin J, Gao M, Wu A. Synthesis 2008; 3565
    • 3d Sugiura M, Ashikari Y, Nakaijima M. J. Org. Chem. 2015; 80: 8830
    • 3e Mandal S, Mandal S, Ghosh SK, Ghosh A, Saha R, Banerjee S, Saha B. Synth. Commun. 2016; 46: 1327
    • 3f Kazi I, Guha S, Sekar G. Org. Lett. 2017; 19: 1244
    • 3g Mansaray JK, Sun J, Huang S, Yao W. Synlett 2019; 30: 809
    • 4a Sharpless KB, Lauer RF, Teranishi AY. J. Am. Chem. Soc. 1973; 95: 6137
    • 4b Reich HJ, Reich IL, Renga JM. J. Am. Chem. Soc. 1973; 95: 5813
    • 4c Trost BM, Salzmann TN, Hiroi K. J. Am. Chem. Soc. 1976; 98: 4887
    • 4d Reich HJ. Acc. Chem. Res. 1979; 12: 22
    • 4e Resek JE, Meyers AI. Tetrahedron Lett. 1995; 36: 7051
    • 5a Astin S, Newman AC. C, Riley HL. J. Chem. Soc. 1933; 391
    • 5b King AO, Anderson RK, Shuman RF, Karady S, Abramson NL, Douglas AW. J. Org. Chem. 1993; 58: 3384
    • 6a Agnello EJ, Laubach GD. J. Am. Chem. Soc. 1957; 79: 1257
    • 6b Walker D, Hiebert JD. Chem. Rev. 1967; 67: 153
    • 6c Bhattacharya A, DiMichele LM, Dolling UH, Douglas AW, Grabowski EJ. J. J. Am. Chem. Soc. 1988; 110: 3318
    • 6d Theissen RJ. J. Org. Chem. 1971; 36: 752
    • 6e Bierling B, Kirschke K, Oberender H, Schulz M. J. Prakt. Chem. 1972; 314: 170
    • 6f Wolff S, Agosta WC. Synthesis 1976; 240
    • 6g Mincione E, Ortaggi G, Sirna A. Synthesis 1977; 773
    • 6h Greene AE, Luche M.-J, Deprés J.-P. J. Am. Chem. Soc. 1983; 105: 2435
    • 6i Mukaiyama T, Ohshima M, Nakatsuka T. Chem. Lett. 1983; 1207
    • 6j Greene AE, Luche M.-J, Serra AA. J. Org. Chem. 1985; 50: 3957
    • 6k Buckle DR. 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone. In Encyclopedia of Reagents for Organic Synthesis. John Wiley & Sons; New York: 2010
    • 7a Nicolaou KC, Zhong YL, Baran PS. J. Am. Chem. Soc. 2000; 122: 7596
    • 7b Nicolaou KC, Montagnon T, Baran PS. Angew. Chem. Int. Ed. 2002; 41: 993
    • 7c Nicolaou KC, Gray DL. F, Montagnon T, Harrison ST. Angew. Chem. Int. Ed. 2002; 41: 996
    • 7d Nicolaou KC, Montagnon T, Baran PS, Zhong YL. J. Am. Chem. Soc. 2002; 124: 2245
    • 7e Nicolaou KC, Montagnon T, Baran PS. Angew. Chem. Int. Ed. 2002; 41: 1386
    • 7f Uyanik M, Akakura M, Ishihara K. J. Am. Chem. Soc. 2009; 131: 251
  • 8 Mukaiyama T, Matsuo JI, Kitagawa H. Chem. Lett. 2000; 29: 1250
  • 9 Teskey CJ, Adler P, Goncalves CR, Maulide N. Angew. Chem. Int. Ed. 2019; 58: 447
  • 10 Bauer A, Maulide N. Chem. Sci. 2019; 10: 9836
  • 11 Wang M.-M, Sui G.-H, Cui X.-C, Wang H, Qu J.-P, Kang Y.-B. J. Org. Chem. 2019; 84: 8267
    • 12a Ito Y, Hirao T, Saegusa T. J. Org. Chem. 1978; 43: 1011
    • 12b Porth S, Bats JW, Trauner D, Giester G, Mulzer J. Angew. Chem. Int. Ed. 1999; 38: 2015
  • 13 Shimizu I, Tsuji J. J. Am. Chem. Soc. 1982; 104: 5844
  • 14 Larock RC, Hightower TR, Kraus GA, Hahn P, Zheng D. Tetrahedron Lett. 1995; 36: 2423
    • 15a Kirschke K, Krause HW, Mennenga H, Timm D. Ger. (East) GEXXA8 DD 107253, 1974 Chem. Abstr. 1974, 83, 9291
    • 15b Muzart J, Pete JP. J. Mol. Catal. 1982; 15: 373
    • 15c Wenzel TT. J. Chem. Soc., Chem. Commun. 1989; 932
    • 15d Fuchita Y, Harada Y. Inorg. Chim. Acta 1993; 208: 43
    • 15e Zhu J, Liu J, Ma R, Xie H, Li J, Jiang H, Wang W. Adv. Synth. Catal. 2009; 351: 1229
    • 15f Liu J, Zhu J, Jiang H, Wang W, Li J. Chem. Asian. J. 2009; 4: 1712
    • 15g Diao TN, Stahl SS. J. Am. Chem. Soc. 2011; 133: 14566
    • 15h Diao TN, Wadzinski TJ, Stahl SS. Chem. Sci. 2012; 3: 887
    • 15i Gao W.-M, He Z.-Q, Qian Y, Zhao J, Huang Y. Chem. Sci. 2012; 3: 883
    • 15j Wang M.-M, Ning X.-S, Qu J.-P, Kang Y.-B. ACS Catal. 2017; 7: 4000
    • 15k Chen Y, Huang D, Zhao Y, Newhouse TR. Angew. Chem. Int. Ed. 2017; 56: 8258
    • 15l Chen M, Rago AJ, Dong G. Angew. Chem. Int. Ed. 2018; 57: 16205
    • 15m Pan G.-F, Zhu X.-Q, Guo R.-L, Gao Y.-R, Wang Y.-Q. Adv. Synth. Catal. 2018; 360: 4774
    • 15n Fulton TJ, Wu B, Alexy EJ, Zhang H, Stoltz BM. Tetrahedron 2019; 75: 4104
    • 15o Keerthana MS, Jeganmohan M. Chem. Commun. 2022; 58: 8814
    • 15p Keerthana MS, Jeganmohan M. J. Org. Chem. 2022; 87: 4873
    • 16a Muzart J. Eur. J. Org. Chem. 2010; 3779
    • 16b Turlik A, Chen Y, Newhouse TR. Synlett 2016; 27: 331
    • 16c Hirao T. J. Org. Chem. 2019; 84: 1687
    • 17a Iosub AV, Stahl SS. ACS Catal. 2016; 6: 8201
    • 17b Shaikh RR. Turk. J. Chem. 2017; 41: 601
    • 17c Le Bras J, Muzart J. The Saegusa Oxidation and Related Procedures . In Organic Reactions, Vol. 98. Denmark SE. John Wiley & Sons; Hoboken: 2019: 1-172
    • 17d Parisotto S, Deagostino A. Synthesis 2019; 51: 1892
    • 17e Wang C, Dong G. ACS Catal. 2020; 10: 6058
    • 17f Chen H, Liu L, Huang T, Chen J, Chen T. Adv. Synth. Catal. 2020; 362: 3332
    • 17g Gnaim S, Vantourout JC, Serpier F, Echeverria P.-G, Baran PS. ACS Catal. 2021; 11: 883
    • 17h Wen C, Li T, Huang Z, Kang Q.-K. Chem. Rec. 2023; e202300146
  • 18 Huang D, Newhouse TR. Acc. Chem. Res. 2021; 54: 1118
    • 21a Wang N, Liu R, Chen J, Liang X. Chem. Commun. 2005; 5322
    • 21b Ma S, Liu J, Li S, Chen B, Cheng J, Kuang J, Liu Y, Wan B, Wang Y, Ye J, Yu Q, Yuan W, Yu S. Adv. Synth. Catal. 2011; 353: 1005
    • 21c Scepaniak JJ, Wright AM, Lewis RA, Wu G, Hayton TW. J. Am. Chem. Soc. 2012; 134: 19350
    • 21d Dighe SU, Chowdhury D, Batra S. Adv. Synth. Catal. 2014; 356: 3892
    • 21e Jiang X, Zhang J, Ma S. J. Am. Chem. Soc. 2016; 138: 8344
    • 21f Balaraman E, Nandakumar A, Jaiswal G, Sahoo MK. Catal. Sci. Technol. 2017; 7: 3177
    • 21g Jiang X, Liu J, Ma S. Org. Process Res. Dev. 2019; 23: 825
  • 22 Zhang X.-W, Jiang G.-Q, Lei S.-H, Shan X.-H, Qu J.-P, Kang Y.-B. Org. Lett. 2021; 23: 1611
  • 23 Jiang G.-Q, Han B.-H, Cai X.-P, Qu J.-P, Kang Y.-B. Org. Lett. 2023; 25: 4429
    • 25a Dempsey JL, Brunschwig BS, Winkler JR, Gray HB. Acc. Chem. Res. 2009; 42: 1995
    • 25b Artero V, Chavarot-Kerlidou M, Fontecave M. Angew. Chem. Int. Ed. 2011; 50: 7238
    • 25c Wu L.-Z, Chen B, Li Z.-J, Tung C.-H. Acc. Chem. Res. 2014; 47: 2177
    • 25d Chen B, Wu L.-Z, Tung C.-H. Acc. Chem. Res. 2018; 51: 2512
  • 26 Yu W.-L, Ren Z.-G, Ma K.-X, Yang H.-Q, Yang J.-J, Zheng H, Wu W, Xu P.-F. Chem. Sci. 2022; 13: 7947
  • 27 Ritu, Kolb D, Jain N, König B. Adv. Synth. Catal. 2023; 365: 605
    • 28a Tasker SZ, Standley EA, Jamison TF. Nature 2014; 509: 299
    • 28b Zweig JE, Kim DE, Newhouse TR. Chem. Rev. 2017; 117: 11680
  • 29 Huang D, Szewczyk SM, Zhang P, Newhouse TR. J. Am. Chem. Soc. 2019; 141: 5669
  • 30 Allen SE, Walvoord RR, Padilla-Salinas R, Kozlowski MC. Chem. Rev. 2013; 113: 6234
  • 31 Liang L, Yang G, Xu F, Niu Y, Sun Q, Xu P. Eur. J. Org. Chem. 2013; 6130
  • 32 Lai T.-T, Xie D, Zhou C.-H, Cai G.-X. J. Org. Chem. 2016; 81: 8806
  • 33 Jie X, Shang Y, Zhang X, Su W. J. Am. Chem. Soc. 2016; 138: 5623
    • 34a Wang Z, Chen G, Zhang X, Fan X. Org. Chem. Front. 2017; 4: 612
    • 34b Tiwari DK, Phanindrudu M, Wakade SB, Nanubolu JB, Tiwari DK. Chem. Commun. 2017; 53: 5302
    • 34c Jiang B, Liang QJ, Han Y, Zhao M, Xu YH, Loh TP. Org. Lett. 2018; 20: 3215
    • 34d Li H, Jiang Q, Jie X, Shang Y, Zhang Y, Goossen LJ, Su W. ACS Catal. 2018; 8: 4777
    • 34e Jie X, Shang Y, Chen Z.-N, Zhang X, Zhuang W, Su W. Nat. Commun. 2018; 9: 5002
    • 34f Hu R, Chen F.-J, Zhang X, Zhang M, Su W. Nat. Commun. 2019; 10: 3681
    • 34g Wang T, Chen G, Lu Y.-J, Chen Q, Huo Y, Li X. Adv. Synth. Catal. 2019; 361: 3886
    • 34h Hu R, Tao Y, Zhang X, Su W. Angew. Chem. Int. Ed. 2021; 60: 8425
    • 34i Chen Z, Li H, Liao Y, Wang M, Su W. Chem. Commun. 2023; 59: 6686
  • 35 Shang Y, Jie X, Jonnada K, Zafar SN, Su W. Nat. Commun. 2017; 8: 2273
  • 36 Chen M, Dong G. J. Am. Chem. Soc. 2019; 141: 14889
  • 37 Hu Z, Yang X. Dalton Trans. 2021; 50: 2997
  • 38 Chen W, Sun C, Zhang Y, Hu T, Zhu F, Jiang X, Abame MA, Yang F, Suo J, Shi J, Shen J, Aisa HA. J. Org. Chem. 2019; 84: 8702
    • 39a Movassaghi M, Hunt DK, Tjandra M. J. Am. Chem. Soc. 2006; 128: 8126
    • 39b Dong S, Hamel E, Bai R, Covell DG, Beutler JA, Porco JA. Jr. Angew. Chem. Int. Ed. 2009; 48: 1494
    • 39c Dounay AB, Humphreys PG, Overman LE, Wrobleski AD. J. Am. Chem. Soc. 2008; 130: 5368
    • 39d Yokoe H, Mitsuhashi C, Matsuoka Y, Yoshimura T, Yoshida MM, Shishido K. J. Am. Chem. Soc. 2011; 133: 8854
    • 39e Schuppe AW, Huang D, Chen Y, Newhouse TR. J. Am. Chem. Soc. 2018; 140: 2062
    • 40a Ueno S, Shimizu R, Kuwano R. Angew. Chem. Int. Ed. 2009; 48: 4543
    • 40b Moon Y, Kwon D, Hong S. Angew. Chem. Int. Ed. 2012; 51: 11333
    • 40c Lee J, Yu J, Son S, Heo J, Kim T, An J.-Y, Inn K.-S, Kim N.-J. Org. Biomol. Chem. 2016; 14: 777
    • 41a Hayashi Y, Itoh T, Ishikawa H. Angew. Chem. Int. Ed. 2011; 50: 3920
    • 41b Simon M.-O, Girard SA, Li C.-J. Angew. Chem. Int. Ed. 2012; 51: 7537
    • 41c Huang Z, Dong G. J. Am. Chem. Soc. 2013; 135: 17747
    • 41d Jeong Y, Moon Y, Hong S. Org. Lett. 2015; 17: 3252
    • 41e Huang Z, Sam QP, Dong G. Chem. Sci. 2015; 6: 5491
    • 41f Wang C, Dong G. J. Am. Chem. Soc. 2018; 140: 6057
    • 41g Koizumi Y, Jin X, Yatabe T, Miyazaki R, Hasegawa J.-y, Nozaki K, Mizuno N, Yamaguchi K. Angew. Chem. Int. Ed. 2019; 58: 10893
  • 42 Zhang P, Huang D, Newhouse TR. J. Am. Chem. Soc. 2020; 142: 1757