Synthesis
DOI: 10.1055/a-2302-5363
short review
Special Issue Flow Chemistry

Flow Chemistry of Metal Carbenoid Species towards Selective Organic Synthesis

,


Abstract

This review deals with C1 carbenoid chemistry, with a focus on lithium carbenoid species generated in flash flow systems. Strict control of the temperature, residence time, and mixing efficiency has led to various transformation reactions involving epoxidation, cyclopropanation, and homologation, among others. The use of other metal species, including trifluoromethylpotassium (CF3K) and magnesium/ zinc carbenoids, in flow systems is also introduced.

1 Introduction

1.1 Lithium Carbenoids in C1 Chemistry

1.2 Flow Chemistry for C1 Lithium Carbenoids

2 Flow Reactions Involving Carbenoid Species

2.1 Deprotonative Generation of Lithium Carbenoid Species

2.2 Generation of Lithium Carbenoid Species via Halogen–Lithium Exchange

2.3 Generation of Lithium Carbenoid Species via Reductive Lithiation

2.4 Generation of Lithium Carbenoid Species via Alkyllithiation

2.5 Generation of Trifluoromethylpotassium Species in Flow

2.6 Generation of Other Metal Carbenoid Species

3 Conclusion



Publication History

Received: 27 February 2024

Accepted after revision: 09 April 2024

Accepted Manuscript online:
09 April 2024

Article published online:
24 April 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Zhou W, Cheng K, Kang J, Zhou C, Subramanian V, Zhang Q, Wang Y. Chem. Soc. Rev. 2019; 48: 3193
    • 1b The Chemical Transformations of C1 Compounds . Wu X.-F, Han B, Ding K, Liu Z. Wiley-VCH; Weinheim: 2022
    • 2a Catalysis in C1 Chemistry (Catalysis by Metal Complexes) . Keim W. D. Reidel Publishing Company; Dordrecht: 1983
    • 2b The Organometallic Chemistry of the Transition Metals . Crabtree RH. Wiley; Hoboken, New Jersey: 2014
    • 3a Siegel H. Lithium Halocarbenoids–Carbanions of High Synthetic Versatility. In Topics in Current Chemistry. Boschke FL. Springer; Berlin: 2005. 106. 55-78
    • 3b Modern Lithium Carbenoid Chemistry . In Contemporary Carbene Chemistry, Chap. 11. Moss RA, Doyle MP. Wiley; New York: 2014
    • 3c Capriati V, Florio S. Chem. Eur. J. 2010; 16: 4152
    • 3d Gessner VH. Chem. Commun 2016; 52: 12011
    • 3e Pace V, Holzer W, De Kimpe N. Chem. Rec. 2016; 16: 2061
    • 3f Colella M, Nagaki A, Luisi R. Chem. Eur. J. 2020; 26: 19
    • 4a Thomas SP, French RM, Jheengut V, Aggarwal VK. Chem. Rec. 2009; 9: 24
    • 4b Scott HK, Aggarwal VK. Chem. Eur. J. 2011; 17: 13124
    • 4c Leonari D, Aggarwal VK. Acc. Chem. Res. 2014; 47: 3174
    • 4d Collins BS. L, Wilson CM, Myers EL, Aggarwal VK. Angew. Chem. Int. Ed. 2017; 56: 11700
    • 4e Castoldi L, Monticelli S, Senatore R, Lelo L, Pace V. Chem. Commun. 2018; 54: 6692
    • 4f Matteson DS, Collins BS. L, Aggarwal VK. Org. React. 2021; 105: 427
    • 4g Yeung K, Mykura RC, Aggarwal VK. Nat. Synth. 2022; 1: 117

      For selected references on flow microreactor synthesis, see:
    • 5a Microreactors in Organic Chemistry and Catalysis, 2nd ed. Wirth T. Wiley; Hoboken, NJ: 2013
    • 5b Darvas F, Hessel V, Dorman G. Flow Chemistry . DeGruyter; Berlin: 2014
    • 5c Pastre JC, Browne DL, Ley SV. Chem. Soc. Rev. 2013; 42: 8849
    • 5d Baxendale IR. J. Chem. Technol. Biotechnol. 2013; 88: 519
    • 5e Fukuyama T, Totoki T, Ryu I. Green Chem. 2014; 16: 2042
    • 5f Cambié D, Bottecchia C, Straathof NJ. W, Hessel V, Noël T. Chem. Rev. 2016; 116: 10276
    • 5g Kobayashi S. Chem. Asian J. 2016; 11: 425
    • 5h Degennaro L, Carlucci C, De Angelis S, Luisi R. J. Flow. Chem. 2016; 6: 136
    • 5i Plutschack MB, Pieber B, Gilmore K, Seeberger PH. Chem. Rev. 2017; 117: 11796
    • 5j Cantillo D, Kappe CO. React. Chem. Eng. 2017; 2: 7
    • 5k Zhao T, Micouin L, Piccardi R. Helv. Chim. Acta 2019; 102: e1900172
    • 5l Power M, Alcock E, McGlacken GP. Org. Process Res. Dev. 2020; 24: 1814
    • 5m Laudadio G, Deng Y, van der Wal K, Ravelli D, Nuño M, Fagnoni M, Guthrie D, Sun Y, Noël T. Science 2020; 369: 92
    • 5n Chatterjee S, Guidi M, Seeberger PH, Gilmore K. Nature 2020; 579: 379
    • 5o Fu WC, MacQueenac PM, Jamison TF. Chem. Soc. Rev. 2021; 50: 7378
    • 5p Miyamura H, Kobayashi S. Angew. Chem. Int. Ed. 2022; 61: e202201203
    • 5q Jiang Y, Yorimitsu H. JACS Au 2022; 2: 2514
    • 5r Shamoto O, Komuro K, Sugisawa N, Chen T-H, Nakamura H, Fuse S. Angew. Chem. Int. Ed. 2023; 62: e202300647
    • 5s Jiang Y, Kurogi T, Yorimitsu H. Nat. Synth. 2024; 3: 192
    • 6a Yoshida J. Basics of Flow Microreactor Synthesis . Springer; Tokyo: 2015
    • 6b Nagaki A, Ashikari Y, Takumi M, Tamaki T. Chem. Lett. 2021; 50: 485
    • 6c Ashikari Y, Nagaki A. Synthesis 2021; 53: 1879
    • 6d Ashikari Y, Nagaki A. In Enabling Tools and Techniques for Organic Synthesis: A Practical Guide to Experimentation, Automation, and Computation, Chap. 4. Newman SG. Wiley; Hoboken: 2023: 107-147
  • 7 Hartwig J, Metternich JB, Nikbin N, Kirschninga A, Ley SV. Org. Biomol. Chem. 2014; 12: 3611
  • 8 Musci P, Colella M, Sivo A, Romanazzi G, Luisi R, Degennaro L. Org. Lett. 2020; 22: 3623
  • 9 Hafner A, Mancino V, Meisenbach M, Schenkel B, Sedelmeier J. Org. Lett. 2017; 19: 786
  • 10 Lima F, Meisenbach M, Schenkelb B, Sedelmeier J. Org. Biomol. Chem. 2021; 19: 2420
  • 11 Stueckler C, Hermsen P, Ritzen B, Vasiloiu M, Poechlauer P, Steinhofer S, Pelz A, Zinganell C, Felfer U, Boyer S, Goldbach M, de Vries A, Pabst T, Winkler G, LaVopa V, Hecker S, Schuster C. Org. Process Res. Dev. 2019; 23: 1069
    • 12a Okamoto K, Higuma R, Muta K, Fukumoto K, Tsuchihashi Y, Ashikari Y, Nagaki A. Chem. Eur. J. 2023; 29: e202301738
    • 12b Colella M, Tota A, Takahashi Y, Higuma R, Ishikawa S, Degennaro L, Luisi R, Nagaki A. Angew. Chem. Int. Ed. 2020; 59: 10924
  • 13 Okamoto K, Muta K, Yamada H, Higuma R, Ashikari Y, Nagaki A. React. Chem. Eng. 2024; in press DOI: 10.1039/D3RE00648D.
  • 14 Nagaki A, Takizawa E, Yoshida J.-i. J. Am. Chem. Soc. 2009; 131: 1654
  • 15 Degennaro L, Nagaki A, Moriwaki Y, Romanazzi G, Dell’Anna MM, Yoshida J.-i, Luisi R. Open Chem. 2016; 14: 377
  • 16 von Keutz T, Cantillo D, Kappe CO. Org. Lett. 2019; 21: 10094
  • 17 Degennaro L, Fanelli F, Giovine A, Luisi R. Adv. Synth. Catal. 2015; 357: 21
  • 18 Kuhwalda C, Kirschning A. Org. Lett. 2021; 23: 4300
    • 19a Nagaki A, Yamashita H, Hirose K, Tsuchihashi Y, Yoshida J.-i. Angew. Chem. Int. Ed. 2019; 58: 4027
    • 19b Nagaki A, Yamashita H, Tsuchihashi Y, Hirose K, Takumi M, Yoshida J.-i. Chem. Eur. J. 2019; 25: 13719
  • 20 Tomida Y, Nagaki A, Yoshida J.-i. J. Am. Chem. Soc. 2011; 133: 3744
  • 21 For a review on microflow trifluoromethylation, see: Sumii Y, Shibata N. Chem. Rec. 2023; 23: e202300117
  • 22 Streng AG. J. Chem. Eng. Data 1971; 16: 357
  • 23 Prakash GK. S, Jog PV, Batamack PT. D, Olah GA. Science 2012; 338: 1324
  • 24 Musio B, Gala E, Ley SV. ACS Sustainable Chem. 2018; 6: 1489
    • 25a Hirano K, Gondo S, Punna N, Tokunaga E, Shibata N. ChemistryOpen 2019; 8: 406
    • 25b Fujihira Y, Iwasaki H, Sumii Y, Adachi H, Kagawa T, Shibata N. Bull. Chem. Soc. Jpn. 2022; 95: 1396
  • 26 Lee H.-J, Joo J.-U, Yim S.-J, Kim D.-P, Kim H. Nat. Commun. 2023; 14: 1231
  • 27 For a review on magnesium carbenoids, see: Satoh T. Chem. Soc. Rev. 2007; 36: 1561
  • 28 von Keutz T, Cantillo D, Kappe CO. Org. Lett. 2020; 22: 7537

    • For reviews, see:
    • 29a Hoveyda AH, Evans DA, Fu GC. Chem. Rev. 1993; 93: 1307
    • 29b Munir R, Zahoor AF, Javed S, Parveen B, Mansha A, Irfan A, Khan SG, Irfan A, Kotwica-Mojzych K, Mojzych M. Molecules 2023; 28: 5651
    • 30a Simmons HE, Smith RD. J. Am. Chem. Soc. 1958; 80: 5323
    • 30b Simmons HE, Smith RD. J. Am. Chem. Soc. 1959; 81: 4256
    • 31a Furukawa J, Kawabata N, Nishimura J. Tetrahedron Lett. 1966; 22: 3353
    • 31b Furukawa J, Kawabata N, Nishimura J. Tetrahedron 1968; 24: 53
  • 32 Nova-Fernández JL, Pascual-Coca G, Cabrera S, Alemán J. Adv. Synth. Catal. 2024; 366: 710