Synthesis
DOI: 10.1055/a-2328-3037
paper

Redox-Neutral 1,2-Dicarbofunctionalization of Buta-1,3-diene by Merging Decatungstate and Chromium Catalysis

Du Ding
,
Pu-Sheng Wang
We are grateful for financial support from the Youth Innovation Promotion Association of the Chinese Academy of Sciences (2020448), the National Natural Science Foundation of China (NSFC; 22322109 and 22171254), and the Start-up Research Fund from the University of Science and Technology of China (KY2060000216).


Abstract

Homoallylic alcohol is a significantly useful intermediate in organic synthesis. Here we establish a three-component Nozaki–Hiyama–Kishi (NHK) type reaction of buta-1,3-diene, aldehydes, and aliphatic C–H partners by merging decatungstate and chromium catalysis, enabling a modular, redox-neutral, and atom-economic strategy to access a diverse range of homoallylic alcohols.

Supporting Information



Publikationsverlauf

Eingereicht: 21. März 2024

Angenommen nach Revision: 15. Mai 2024

Accepted Manuscript online:
15. Mai 2024

Artikel online veröffentlicht:
03. Juni 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 2a Faller JW, Sams DW. I, Liu X. J. Am. Chem. Soc. 1996; 118: 1217
    • 2b Gao S, Duan M, Shao Q, Houk KN, Chen M. J. Am. Chem. Soc. 2020; 142: 18355
    • 2c Hayashi S, Hirano K, Yorimitsu H, Oshima K. Org. Lett. 2005; 7: 3577
    • 2d Lu XY, Li JS, Wang JY, Wang SQ, Li YM, Zhu YJ, Zhou R, Ma WJ. RSC Adv. 2018; 8: 41561
    • 2e Sormunen GJ, Lewis DE. Synth. Commun. 2004; 34: 3473
    • 3a Shaw MH, Twilton J, MacMillan DW. C. J. Org. Chem. 2016; 81: 6898
    • 3b Romero NA, Nicewicz DA. Chem. Rev. 2016; 116: 10075
    • 3c Wang C.-S, Dixneuf PH, Soulé J.-F. Chem. Rev. 2018; 118: 7532
    • 3d Prier CK, Rankic DA, MacMillan DW. C. Chem. Rev. 2013; 113: 5322
    • 3e Pitre SP, Overman LE. Chem. Rev. 2022; 122: 1717
  • 4 Chan AY, Perry IB, Bissonnette NB, Buksh BF, Edwards GA, Frye LI, Garry OL, Lavagnino MN, Li BX, Liang Y, Mao E, Millet A, Oakley JV, Reed NL, Sakai HA, Seath CP, MacMillan DW. C. Chem. Rev. 2022; 122: 1485
    • 5a Fürstner A, Shi N. J. Am. Chem. Soc. 1996; 118: 12349
    • 5b Dutheuil G, Lei X, Pannecoucke X, Quirion J.-C. J. Org. Chem. 2005; 70: 1911
    • 5c Kobayashi K, Fujii Y, Hayakawa I, Kigoshi H. Org. Lett. 2011; 13: 900
    • 5d Takai K, Matsukawa N, Takahashi A, Fujii T. Angew. Chem. Int. Ed. 1998; 37: 152
    • 6a Mitsunuma H, Tanabe S, Fuse H, Ohkubo K, Kanai M. Chem. Sci. 2019; 10: 3459
    • 6b Tanabe S, Mitsunuma H, Kanai M. J. Am. Chem. Soc. 2020; 142: 12374
    • 6c Schwarz JL, Huang H.-M, Paulisch TO, Glorius F. ACS Catal. 2020; 10: 1621
  • 7 Xiong Y, Zhang G. J. Am. Chem. Soc. 2018; 140: 2735
    • 8a Hao E, Lu B, Liu Y, Yang T, Yan H, Ding X, Jin Y, Shi L. Org. Lett. 2023; 25: 5094
    • 8b Li F, Lin S, Chen Y, Shi C, Yan H, Li C, Wu C, Lin L, Duan C, Shi L. Angew. Chem. Int. Ed. 2021; 60: 1561
    • 8c Lin S, Chen Y, Yan H, Liu Y, Sun Y, Hao E, Shi C, Zhang D, Zhu N, Shi L. Org. Lett. 2021; 23: 8077
    • 8d Li F, Lin S, Li X, Shi L. Synthesis 2021; 53: 1889
  • 9 Hu Q, Song S, Zeng T, Wang L, Li Z, Wu J, Zhu J. Org. Lett. 2024; 26: 1550
    • 10a Ravelli D, Protti S, Fagnoni M. Acc. Chem. Res. 2016; 49: 2232
    • 10b Ravelli D, Fagnoni M, Fukuyama T, Nishikawa T, Ryu I. ACS Catal. 2018; 8: 701
    • 10c Perry IB, Brewer TF, Sarver PJ, Schultz DM, DiRocco DA, MacMillan DW. C. Nature 2018; 560: 70
    • 12a Dai Z.-Y, Nong Z.-S, Song S, Wang P.-S. Org. Lett. 2021; 23: 3157
    • 12b Dai Z.-Y, Nong Z.-S, Wang P.-S. ACS Catal. 2020; 10: 4786
  • 13 Yahata K, Sakurai S, Hori S, Yoshioka S, Kaneko Y, Hasegawa K, Akai S. Org. Lett. 2020; 22: 1199
  • 14 Ravelli D, Fagnoni M, Fukuyama T, Nishikawa T, Ryu I. ACS Catal. 2017; 8: 701
    • 15a Renneke RF, Pasquali M, Hill CL. J. Am. Chem. Soc. 1990; 112: 6585
    • 15b Waele VD, Poizat O, Fagnoni M, Bagno A, Ravelli D. ACS Catal. 2016; 6: 7174
    • 15c Wrona PK. J. Electroanal. Chem. 1992; 322: 119