Synthesis 2010(2): 221-232  
DOI: 10.1055/s-0029-1217125
PAPER
© Georg Thieme Verlag Stuttgart ˙ New York

A Traceless, Solid-Supported Synthesis of β-Turn Mimetics Based on the Hexahydropyrazino[1,2-a]pyrazine-1,2-dione Scaffold

Adam Mieczkowskia, Wiktor Koźmińskia, Janusz Jurczak*a,b
a Department of Chemistry, Warsaw University, Pasteura 1, 02-093 Warsaw, Poland
Fax: +48(22)8225996; e-Mail: jjurczak@chem.uw.edu.pl;
b Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
Further Information

Publication History

Received 27 July 2009
Publication Date:
13 November 2009 (online)

Abstract

The solid-supported synthesis of a library of β-turn mimetics based on the three-component Petasis condensation and 2,5-diketopiperazine formation is reported. The eight-step sequence starts from optically pure (S)-piperazine-2-carboxylic acid dihydrochloride, which is first converted into an orthogonally protected, resin-bound amino derivative. The subsequent transformations lead to compounds having the common hexahydropyrazino[1,2-a]pyrazine-1,2-dione core and diverse side chains, which mimic the β-turn structure. This synthetic route includes protection of the initial amino acid with two different protecting groups, followed by attachment to the Wang resin using the Mitsunobu reaction, deprotection of the β-nitrogen atom, then Petasis reaction, amidation, deprotection of the α-nitrogen atom, coupling with a Boc-protected α-amino acid, cleavage of the Boc group, and the cyclizative cleavage from the resin, resulting in the requested bicyclic products obtained in good yields and having good to moderate purities. Six different boronic acids, four amines, and nine α-amino acids were applied to this synthetic route, to explore the efficiency and limitations of the described method.

    References

  • 1a Fu X. Zeng L.-M. Su J.-Y. Pais M. J. Nat. Prod.  1997,  60:  695 
  • 1b Fu X. Ferreira MLG. Schmitz FJ. Kelly-Borges M. J. Nat. Prod.  1998,  61:  1226 
  • 2a Kanoh K. Kohno S. Asari T. Harada T. Katada J. Muramatsu M. Kawashima H. Sekiya H. Uno I. Bioorg. Med. Chem. Lett.  1997,  7:  2847 
  • 2b Kanoh K. Kohno S. Katada J. Takahashi J. Uno I. Hayashi Y. Bioorg. Med. Chem.  1999,  7:  1471 
  • 3 Donkor IO. Sanders ML. Bioorg. Med. Chem. Lett.  2001,  11:  2647 
  • 4 Clark B. Capon JR. Lancey E. Tennant S. Gill JH. J. Nat. Prod.  2005,  68:  1661 
  • 5 Cui CB. Kakeya H. Osada H. Tetrahedron  1996,  52:  12651 
  • 6a Shiono Y. Akiyama K. Hayashi H. Biosci., Biotechnol., Biochem.  2000,  64:  103 
  • 6b Shiono Y. Akiyama K. Hayashi H. Biosci., Biotechnol., Biochem.  2000,  64:  1519 
  • 6c Hayashi H. Furutsuka K. Shiono Y. J. Nat. Prod.  1999,  62:  315 
  • 6d Hayashi H. Fujiwara T. Murao S. Arai M. Agric. Biol. Chem.  1991,  55:  3143 
  • 6e Hayashi H. Takiuchi K. Murao S. Arai M. Agric. Biol. Chem.  1989,  53:  461 
  • 7 Wyatt PG. Allen MJ. Borthwick AD. Davies DE. Exall AM. Hatley RJD. Irving WR. Livermore DG. Miller ND. Nerozzi F. Sollis SL. Bioorg. Med. Chem. Lett.  2005,  15:  2579 
  • 8 Boger DL. Fink BE. Hendrick MP. Bioorg. Med. Chem. Lett.  2000,  10:  1019 
  • 9 Szardenings AK. Antonenko V. Cambell DA. DeFrancisko N. Ida S. Shi L. Sharkov N. Tien D. Wang Y. Navre M. J. Med. Chem.  1999,  42:  1348 
  • 10 Prakash KRC. Tang Y. Kozikowski AP. Flippen-Anderson JL. Knoblach SM. Faden AI. Bioorg. Med. Chem.  2002,  10:  3043 
  • For examples see:
  • 11a Suat KK. Seettharama DSJ. Curr. Pharm. Des.  2003,  9:  1209 
  • 11b Monfardini C. Canziani G. Plugariu C. Kieber-Emmons T. Godillot PA. Kwah J. Bajgier J. Chaiken I. Williams WV. Curr. Pharm. Des.  2004,  8:  2185 
  • 11c Perez de Vega MJ. Martin-Martinez M. Genzales-Muniz R. Curr. Top. Med. Chem.  2007,  7:  33 
  • 11d Kocis P. Campbell JB. Sparks RB. Wildonger R. In High-Throughput Synthesis   Sucholeiki I. Marcel-Dekker; New York: 2001.  p.65-83  
  • 11e Souers AJ. Ellman JA. Tetrahedron  2001,  57:  7431 
  • 11f Burgess K. Acc. Chem. Res.  2001,  34:  826 
  • 11g Cochran AG. Curr. Opin. Chem. Biol.  2001,  5:  654 
  • 11h Zhao L. Chmielewski J. Curr. Opin. Struct. Biol.  2005,  15:  31 
  • 11i Tyndall JDA. Pfeiffer B. Abenante G. Fairlie DP. Chem. Rev.  2005,  105:  793 
  • 11j Olson GL. Bolin DR. Bonner MP. Bos M. Cook CM. Fry DC. Graves BJ. Hatada M. Hill DE. Kahn M. Madison VS. Rusiecki VK. Sarabu R. Sepinwall J. Vincent GP. Voss ME. J. Med. Chem.  1993,  36:  3041 
  • 11k Golebiowski A. Klopfenstein SR. Portlock DE. Curr. Opin. Drug Discov. Devel.  2001,  4:  428 
  • 12a Golebiowski A. Klopfenstein SR. Shao X. Chen JJ. Colson A.-O. Grieb AL. Russell AF. Org. Lett.  2000,  2:  2615 
  • 12b Golebiowski A. Klopfenstein SR. Chen JJ. Shao X. Tetrahedron Lett.  2000,  41:  4841 
  • 12c Golebiowski A. Jozwik J. Klopfenstein SR. Colson A.-O. Grieb AL. Russell AF. Rastogi VL. Diven CF. Portlock DE. Chen JJ. J. Comb. Chem.  2002,  4:  584 
  • 13a Smith GG. Sivakua T. J. Org. Chem.  1983,  48:  627 
  • 13b Yokoyama Y. Hikawa H. Murakami Y. J. Chem. Soc., Perkin Trans. 1  2001,  1431 
  • 14a Bisang C. Weber C. Robinson JA. Helv. Chim. Acta  1996,  79:  1825 
  • 14b Beeli R. Steger M. Linden A. Robinson JA. Helv. Chim. Acta  1996,  79:  2235