Synthesis 2013; 45(22): 3118-3124
DOI: 10.1055/s-0033-1338527
paper
© Georg Thieme Verlag Stuttgart · New York

A Concise Cross-Metathesis Route to Enantiopure 1-Azaspirocycles

Zhen James Wang
School of Chemistry, Monash University, Clayton 3800, Australia   Fax: +61(3)99054597   Email: andrea.robinson@monash.edu
,
Nicolas Daniel Spiccia
School of Chemistry, Monash University, Clayton 3800, Australia   Fax: +61(3)99054597   Email: andrea.robinson@monash.edu
,
Christopher James Gartshore
School of Chemistry, Monash University, Clayton 3800, Australia   Fax: +61(3)99054597   Email: andrea.robinson@monash.edu
,
Jayamini Illesinghe
School of Chemistry, Monash University, Clayton 3800, Australia   Fax: +61(3)99054597   Email: andrea.robinson@monash.edu
,
William Roy Jackson
School of Chemistry, Monash University, Clayton 3800, Australia   Fax: +61(3)99054597   Email: andrea.robinson@monash.edu
,
Andrea Jane Robinson*
School of Chemistry, Monash University, Clayton 3800, Australia   Fax: +61(3)99054597   Email: andrea.robinson@monash.edu
› Author Affiliations
Further Information

Publication History

Received: 06 July 2013

Accepted after revision: 20 August 2013

Publication Date:
27 September 2013 (online)


We dedicate this manuscript to Adrian Blackman (University of Tasmania) and wish him well in his retirement.

Abstract

A concise synthesis of spiropyrrolidines and spiropiperidines has been developed. The approach employs a ruthenium–­alkylidene-catalysed cross-metathesis reaction of enantiopure N-protected allylglycine with methylenecycloalkanes. The resultant alkene intermediates can then undergo a tandem acid-catalysed cyclisation to form spiropyrrolidines. Ring expansion of the spiropyrrolidine system, via an aziridinium intermediate, grants access to the homologous spiropiperidine ring system with excellent stereoretention.

Supporting Information

 
  • References

    • 2a For a review, see: Weinreb SM. Acc. Chem. Res. 2003; 36: 59
    • 2b Pearson WH, Ren Y. J. Org. Chem. 1999; 64: 688
    • 2c Pearson WH, Barta NS, Kampf JW. Tetrahedron Lett. 1997; 38: 3369
    • 2d Abe H, Aoyagi S, Kibayashi C. Tetrahedron Lett. 2000; 41: 1205
    • 2e Abe H, Aoyagi S, Kibayashi C. J. Am. Chem. Soc. 2000; 122: 4583
    • 2f Perry MA, Morin MD, Slafer BW, Rychnovsky SD. J. Org. Chem. 2012; 77: 3390
    • 3a Paudler WW, Kerley GI, McKay J. J. Org. Chem. 1963; 28: 2194
    • 3b Parry RJ, Chang MN. T, Schwab JM, Foxman BM. J. Am. Chem. Soc. 1980; 102: 1099
    • 3c Zhang Z.-W, Zhang X.-F, Feng J, Yang Y.-H, Wang C.-C, Feng J.-C, Liu S. J. Org. Chem. 2013; 78: 786

    • For a review, see:
    • 3d Jilal Miah MA, Hudlicky T, Reed JW In The Alkaloids . Vol. 51. Cordell GA. Academic Press; San Diego: 1998: 199-269
    • 4a Blackman AJ, Li C, Hockless DC. R, Skelton BW, White AH. Tetrahedron 1993; 49: 8645
    • 4b Li CP, Blackman AJ. Aust. J. Chem. 1994; 47: 1355
    • 4c Li CP, Blackman AJ. Aust. J. Chem. 1995; 48: 955
    • 4d Snider BB, Liu T. J. Org. Chem. 1997; 62: 5630
    • 4e Lapointe G, Schenk K, Renaud P. Org. Lett. 2011; 13: 4774
    • 5a Patil AD, Freyer AJ, Reichwein R, Carte B, Killmer LB, Faucette L, Johnson RK, Faulkner DJ. Tetrahedron Lett. 1997; 38: 363
    • 5b Mei S.-L, Zhao G. Eur. J. Org. Chem. 2010; 1660
    • 6a Kuramoto M, Tong C, Yamada K, Chiba T, Hayashi Y, Uemura D. Tetrahedron Lett. 1996; 37: 3867
    • 6b Arimoto H, Hayakawa I, Kuramoto M, Uemura D. Tetrahedron Lett. 1998; 39: 861
    • 6c Keen SP, Weinreb SM. J. Org. Chem. 1998; 63: 6739
    • 6d Trauner D, Schwarz JB, Danishefsky SJ. Angew. Chem. Int. Ed. 1999; 38: 3542
    • 6e Liu D, Acharya HP, Yu M, Wang J, Yeh VS. C, Kang S, Chiruta C, Jachak SM, Clive DL. J. J. Org. Chem. 2009; 74: 7417
    • 7a For a review, see: Sinclair A, Stockman RA. Nat. Prod. Rep. 2007; 24: 298
    • 7b Daly JW, Karle I, Myers CW, Tokuyama T, Waters JA, Witkop B. Proc. Natl. Acad. Sci. U.S.A. 1971; 68: 1870
    • 7c Corey EJ, Arnett JF, Widiger GN. J. Am. Chem. Soc. 1975; 97: 430
  • 8 Liu JF, Heathcock CH. J. Org. Chem. 1999; 64: 8263
  • 9 Huang P, Isayan K, Sarkissian A, Oh T. J. Org. Chem. 1998; 63: 4500
    • 10a Fenster MD. B, Patrick BO, Dake GR. Org. Lett. 2001; 3: 2109
    • 10b Dake GR, Fenster MD. B, Hurley PB, Patrick BO. J. Org. Chem. 2004; 69: 5668
  • 11 Abe H, Aoyagi S, Kibayashi C. J. Am. Chem. Soc. 2005; 127: 1473
  • 12 Vougioukalakis GC, Grubbs RH. Chem. Rev. 2010; 110: 1746
  • 13 Karatholuvhu MS, Sinclair A, Newton AF, Alcaraz ML, Stockman RA, Fuchs PL. J. Am. Chem. Soc. 2006; 128: 12656
  • 14 Elaridi J, Jackson WR, Robinson AJ. Tetrahedron: Asymmetry 2005; 16: 2025
  • 15 Haskins CM, Knight DW. Chem. Commun. 2002; 2724
    • 16a Corey Jr. HS, McCormik JR. D, Swensen WE. J. Am. Chem. Soc. 1964; 86: 1884
    • 16b Trabulsi H, Guillot R, Rousseau G. Eur. J. Org. Chem. 2010; 5884
    • 16c Griffiths-Jones CM, Knight DW. Tetrahedron 2010; 66: 4150
    • 16d Melloni A, Paccani RR, Donati D, Zanirato V, Sinicropi A, Parisi ML, Martin E, Ryazantsev M, Ding WJ, Frutos LM, Basosi R, Fusi S, Latterini L, Ferre N, Olivucci M. J. Am. Chem. Soc. 2010; 132: 9310
    • 16e Coles N, Whitby RJ, Blagg J. Synlett 1992; 143
    • 16f Swarbrick ME, Lubell WD. Chirality 2000; 12: 366
    • 16g Hoberg H, Guhl D. Angew. Chem. 1989; 101: 1091
    • 17a McNaughton BR, Bucholtz KM, Camaaño-Moure A, Miller BL. Org. Lett. 2005; 7: 733
    • 17b Hong SH, Sanders DP, Lee CW, Grubbs RH. J. Am. Chem. Soc. 2005; 127: 17160
    • 18a Anxionnat B, Robert B, George P, Ricci G, Perrin MA, Gomez Pardo D, Cossy J. J. Org. Chem. 2012; 77: 6087
    • 18b Cochi A, Pardo DG, Cossy J. Eur. J. Org. Chem. 2012; 2023
    • 18c Nagle AS, Salvatore RN, Chong B.-D, Jung KW. Tetrahedron Lett. 2000; 41: 3011
    • 18d Jean L, Baglin I, Rouden J, Maddaluno J, Lasne M.-C. Tetrahedron Lett. 2001; 42: 5645
  • 19 Wang ZJ, Jackson WR, Robinson AJ. Org. Lett. 2013; 15: 3006