Synthesis 2013; 45(14): 2029-2033
DOI: 10.1055/s-0033-1338935
paper
© Georg Thieme Verlag Stuttgart · New York

An Efficient Synthesis of 1-Substituted 5-Bromo-1H-tetrazoles

Leonid Myznikov*
a   St. Petersburg State University of Technology and Design, ul. Bolshaja Morskaja 18, 191183 Saint Petersburg, Russian Federation   Email: Myznikov_lv@mail.ru
,
Ulyana Dmitrieva
a   St. Petersburg State University of Technology and Design, ul. Bolshaja Morskaja 18, 191183 Saint Petersburg, Russian Federation   Email: Myznikov_lv@mail.ru
,
Tatiana Artamonova
a   St. Petersburg State University of Technology and Design, ul. Bolshaja Morskaja 18, 191183 Saint Petersburg, Russian Federation   Email: Myznikov_lv@mail.ru
,
Jaroslav Roh
b   Charles University in Prague, Faculty of Pharmacy in Hradec Kralove, 50005 Hradec Kralove, Czech Republic
,
Alexandr Hrabalek
b   Charles University in Prague, Faculty of Pharmacy in Hradec Kralove, 50005 Hradec Kralove, Czech Republic
,
Yuri Zevatskii
a   St. Petersburg State University of Technology and Design, ul. Bolshaja Morskaja 18, 191183 Saint Petersburg, Russian Federation   Email: Myznikov_lv@mail.ru
› Author Affiliations
Further Information

Publication History

Received: 01 March 2013

Accepted after revision: 16 April 2013

Publication Date:
15 May 2013 (online)


Abstract

1-Substituted 1H-tetrazole-5-thiols were efficiently converted into the corresponding 1-substituted 5-bromo-1H-tetrazoles by treatment with zinc(II) bromide and 50% hydrogen peroxide or 36% peracetic acid at 70–80 °C. In most cases, the 5-bromotetrazole products could be isolated simply by dilution of the reaction mixture with water followed by filtration and washing of the precipitated product. Column chromatography was needed only in the case of one tetrazole that was additionally brominated on its side chain under the reaction conditions.

Supporting Information

 
  • References

  • 1 Romagnoli R, Baraldi PG, Salvador MK, Preti D, Tabrizi MA, Brancale A, Fu X.-H, Li J, Zhang S.-Z, Hamel E, Bortolozzi R, Basso G, Viola G. J. Med. Chem. 2012; 55: 475
  • 2 Tang Q, Qianatassio R. Tetrahedron Lett. 2010; 51: 3473
  • 3 Milne J, Buchwald S. J. Am. Chem. Soc. 2004; 126: 13028
  • 4 Organ MG, Abdel-Hadi M, Avola S, Dubovyk I, Hadei N, Kantchev EA, O’Brien CJ, Sayah M, Valente C. Chem. Eur. J. 2008; 14: 2443
  • 5 Webster SP, Binnie M, McConnell KM. M, Sooy K, Ward P, Greaney MF, Vinter A, Pallin D, Dyke HJ, Gill MI. A, Warner I, Seckl JR, Walker BR. Bioorg. Med. Chem. Lett. 2010; 20: 3265
  • 6 Ida Y, Nemoto T, Hirayama S, Fujii H, Osa Y, Imai M, Nakamura T, Kanemasa T, Kato A, Nagase H. Bioorg. Med. Chem. 2012; 20: 949
  • 7 Becker I. J. Heterocycl. Chem. 2008; 45: 1005
  • 8 Ganellin C.R, Hosseini SK, Khalaf YS, Tertiuk W, Hang J.-M, Garbarg M, Ligneau X, Schwartz J.-C. J. Med. Chem. 1995; 38: 3342
  • 9 Satoh Y, Marcopulos N. Tetrahedron Lett. 1995; 36: 1759
  • 10 Klapötke T, Sproll S. Eur. J. Org. Chem. 2010; 1169
  • 11 Gaponik PN, Grigor’ev YuV, Koren’ AO. Chem. Heterocycl. Compd. 1988; 24: 1407
    • 12a Stollé R, Henke-Stark F. J. Prakt. Chem. 1930; 124: 261
    • 12b Balšánek V, Tichotová L, Kuneš J, Špulák M, Pour M, Votruba I, Buchta V. Collect. Czech. Chem. Commun. 2009; 74: 1161
  • 13 Alves JA. C, Johnstone RA. W. Synth. Commun. 1997; 27: 2645
  • 14 Fowler FW, Hassner A, Levy LA. J. Am. Chem. Soc. 1967; 89: 2077
  • 15 Grivas S, Ronne E. Acta Chem. Scand. 1995; 49: 225
  • 16 Kumar MA, Rohitha CN, Kulkarni SJ, Narender N. Synthesis 2010; 1629
  • 17 Lieber E, Ramachandran J. Can. J. Chem. 1959; 37: 101
  • 18 Collibee WL, Nakajima M, Anselme J.-P. J. Org. Chem. 1995; 60: 468