Synthesis 2016; 48(23): 4143-4148
DOI: 10.1055/s-0035-1562542
paper
© Georg Thieme Verlag Stuttgart · New York

Indium(III) Isopropoxide as a Hydrogen Transfer Catalyst for Conversion of Benzylic Alcohols into Aldehydes or Ketones via Oppenauer Oxidation

Yohei Ogiwara
Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science (RIKADAI), Noda, Chiba 278-8510, Japan   Email: sakachem@rs.noda.tus.ac.jp
,
Yuji Ono
Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science (RIKADAI), Noda, Chiba 278-8510, Japan   Email: sakachem@rs.noda.tus.ac.jp
,
Norio Sakai*
Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science (RIKADAI), Noda, Chiba 278-8510, Japan   Email: sakachem@rs.noda.tus.ac.jp
› Author Affiliations
Further Information

Publication History

Received: 28 June 2016

Accepted after revision: 22 July 2016

Publication Date:
01 September 2016 (online)


Abstract

Indium(III) isopropoxide [In(Oi-Pr)3] was applicable as an Oppenauer­ oxidation catalyst, and the conversion of primary or secondary alcohols into the corresponding aldehydes or ketones was promoted at room temperature using pivalaldehyde as an oxidant.

Supporting Information

 
  • References


    • Selected reviews of Oppenauer oxidation:
    • 1a Graves CR, Campbell EJ, Nguyen ST. Tetrahedron: Asymmetry 2005; 16: 3460
    • 1b Ooi T, Miura T, Itagaki Y, Ichikawa H, Maruoka K. Synthesis 2002; 279
    • 1c de Graauw CF, Peters JA, van Bekkum H, Huskens J. Synthesis 1994; 1007
    • 2a Namy JL, Souppe J, Collin J, Kagan HB. J. Org. Chem. 1984; 49: 2045
    • 2b Ishii Y, Nakano T, Inada A, Kishigami Y, Sakurai K, Ogawa M. J. Org. Chem. 1986; 51: 240
    • 2c Krohn K, Knauer B, Küpke J, Seebach D, Beck AK, Hayakawa M. Synthesis 1996; 1341
    • 2d Ishihara K, Kurihara H, Yamamoto H. J. Org. Chem. 1997; 62: 5664
    • 2e Ooi T, Otsuka H, Miura T, Ichikawa H, Maruoka K. Org. Lett. 2002; 4: 2669
    • 2f Graves CR, Zeng B.-S, Nguyen ST. J. Am. Chem. Soc. 2006; 128: 12596
    • 3a Suzuki T, Morita K, Tsuchida M, Hiroi K. J. Org. Chem. 2003; 68: 1601
    • 3b Gauthier S, Scopelliti R, Severin K. Organometallics 2004; 23: 3769
    • 3c Moyer SA, Funk TW. Tetrahedron Lett. 2010; 51: 5430
    • 3d Johnson TC, Clarkson GJ, Wills M. Organometallics 2011; 30: 1859
    • 3e Fujita K.-i, Uejima T, Yamaguchi R. Chem. Lett. 2013; 42: 1496
    • 3f Prakash O, Sharma KN, Joshi H, Gupta PL, Singh AK. Organometallics 2014; 33: 983
  • 4 Lee J, Ryu T, Park S, Lee PH. J. Org. Chem. 2012; 77: 4821
  • 5 Normand M, Kirillov E, Roisnel T, Carpentier J.-F. Organometallics 2012; 31: 5511
  • 6 Ogiwara Y, Kubota M, Kurogi K, Konakahara T, Sakai N. Chem. Eur. J. 2015; 21: 18598
    • 7a Augé J, Lubin-Germain N, Seghrouchni L. Tetrahedron Lett. 2002; 43: 5255
    • 7b Augé J, Lubin-Germain N, Seghrouchni L. Tetrahedron Lett. 2003; 44: 819
  • 8 Jung HM, Choi JH, Lee SO, Kim YH, Park JH, Park J. Organometallics 2002; 21: 5674
  • 9 Hong B.-C, Tseng H.-C, Chen S.-H. Tetrahedron 2007; 63: 2840
  • 10 Lee K, Maleczka RE. Jr. Org. Lett. 2006; 8: 1887
  • 11 Zhu C, Yukimura N, Yamane M. Organometallics 2010; 29: 2098
  • 12 Inokuchi T, Matsumoto S, Fukushima M, Torii S. Bull. Chem. Soc. Jpn. 1991; 64: 796
  • 13 Magano J, Chen MH, Clark JD, Nussbaumer T. J. Org. Chem. 2006; 71: 7103
  • 14 Koren-Selfridge L, Londino HN, Vellucci JK, Simmons BJ, Casey CP, Clark TB. Organometallics 2009; 28: 2085
  • 15 Lin C.-K, Lu T.-J. Tetrahedron 2010; 66: 9688
  • 16 Kim BR, Lee H.-G, Kim EJ, Lee S.-G, Yoon Y.-J. J. Org. Chem. 2010; 75: 484
  • 17 Pelletier G, Bechara WS, Charette AB. J. Am. Chem. Soc. 2010; 132: 12817
  • 18 Velusamy S, Ahamed M, Punniyamurthy T. Org. Lett. 2004; 6: 4821