Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2017; 49(12): 2691-2699
DOI: 10.1055/s-0036-1588766
DOI: 10.1055/s-0036-1588766
paper
The Regioselective Synthesis of o-Nitrobenzyl DOPA Derivatives
Further Information
Publication History
Received: 03 March 2017
Accepted after revision: 06 March 2017
Publication Date:
13 April 2017 (online)
Abstract
Photocaged DOPA derivatives may serve for non-invasive unmasking of the catechol fragment in biological systems. This would enable efficient control of the redox and metal-coordinating properties associated with the free catechol moiety, in particular, in biosynthetically produced adhesive proteins and synthetic peptides. Synthetic routes towards photocaged DOPA derivatives are reported herein. A new method for preparing para-alkylated DOPA starting from 3,4-dihydroxybenzaldehyde is described for the first time.
Supporting Information
- Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0036-1588766.
- Supporting Information
-
References
- 1 Neilands JB. J. Biol. Chem. 1995; 270: 26723
- 2 Axelsson J. Annu. Rev. Physiol. 1971; 33: 1
- 3 Waite JH. Tanzer ML. Biochem. Biophys. Res. Commun. 1980; 96: 1554
- 4 Lee H. Dellatore SM. Miller WM. Messersmith PB. Science (Washington, D. C.) 2007; 318: 426
- 5 Lim S. Kim KR. Choi YS. Kim D.-K. Hwang D. Cha HJ. Biotechnol. Prog. 2011; 27: 1390
- 6 Lin Q. Gourdon D. Sun C. Holten-Andersen N. Anderson TH. Waite JH. Israelachvili JN. Proc. Natl. Acad. Sci. U.S.A. 2007; 104: 3782
- 7a Anderson TH. Yu J. Estrada A. Hammer MU. Waite JH. Israelachvili JN. Adv. Funct. Mater. 2010; 20: 4196
- 7b Danner EW. Kan Y. Hammer MU. Israelachvili JN. Waite JH. Biochemistry 2012; 51: 6511
- 7c Wei W. Yu J. Broomell C. Israelachvili JN. Waite JH. J. Am. Chem. Soc. 2013; 135: 377
- 7d Wei W. Yu J. Gebbie MA. Tan Y. Martinez Rodriguez NR. Israelachvili JN. Waite JH. Langmuir 2015; 31: 1105
- 7e Jeon EY. Hwang BH. Yang YJ. Kim BJ. Choi B.-H. Jung GY. Cha HJ. Biomaterials 2015; 67: 11
- 8a Hwang DS. Yoo HJ. Jun JH. Moon WK. Cha HJ. Appl. Environ. Microbiol. 2004; 70: 3352
- 8b Hwang DS. Gim Y. Cha HJ. Biotechnol. Prog. 2005; 21: 965
- 9 Yang B. Ayyadurai N. Yun H. Choi YS. Hwang BH. Huang J. Lu Q. Zeng H. Cha HJ. Angew. Chem. Int. Ed. 2014; 53: 13360
- 10 Schweigert N. Zehnder AJ. B. Eggen RI. L. Environ. Microbiol. 2001; 3: 81
- 11a Klán P. Šolomek T. Bochet CG. Blanc A. Givens R. Rubina M. Popik V. Kostikov A. Wirz J. Chem. Rev. 2013; 113: 119
- 11b Pelliccioli AP. Wirz J. Photochem. Photobiol. Sci. 2002; 1: 441
- 11c Philipson KD. Gallivan JP. Bandt GS. Dougherty DA. Lester HA. Am. J. Physiol. 2001; 1: C195
- 12 Wang L. Brock A. Herberich B. Schultz PG. Science (Washington, D. C.) 2001; 292: 498
- 13 Deiters A. Groff D. Ryu Y. Xie J. Schultz PG. Angew. Chem. Int. Ed. 2006; 45: 2728
- 14a Dumas A. Lercher L. Spicer CD. Davis BG. Chem. Sci. 2015; 6: 50
- 14b Jaric J. Budisa N. In Hydrocarbon and Lipid Microbiology Protocols . McGenity TJ. Timmis KN. Nogales B. Springer; Heidelberg: 2016: 71
- 15a Hunter L. Hutton CA. Aust. J. Chem. 2003; 56: 1095
- 15b Morera E. Ortar G. Synth. Commun. 2001; 31: 2115
- 16 Boger DL. Yohannes D. J. Org. Chem. 1987; 52: 5283
- 17a Jung ME. Lazarova TI. J. Org. Chem. 1997; 62: 1553
- 17b Chen C. Zhu Y.-F. Wilcoxen K. J. Org. Chem. 2000; 65: 2574
- 18 Cheraiet Z. Hessainia S. Ouarna S. Berredjem M. Aouf N.-E. Green Chem. Lett. Rev. 2013; 6: 211
- 19 Gottlieb HE. Kotlyar V. Nudelman A. J. Org. Chem. 1997; 62: 7512
- 20 Guimond N. Mayer P. Trauner D. Chem. Eur. J. 2014; 20: 9519
- 21 Lesma G. Danieli B. Lodroni F. Passarella D. Sacchetti A. Silvani A. Comb. Chem. High Throughput Screening 2006; 9: 691
- 22 Kubyshkin V. Budisa N. Org. Biomol. Chem. 2017; 15: 619