Synthesis 2017; 49(06): 1214-1222
DOI: 10.1055/s-0036-1588913
paper
© Georg Thieme Verlag Stuttgart · New York

Design and Synthesis of Ʌ-Shaped Photoswitchable Compounds Employing Tröger’s Base Scaffold

Masoud Kazem-Rostami*
Department of Chemistry and Biomolecular Sciences, Macquarie University, North Ryde, NSW 2109, Australia   Email: masoud.kazem-rostami@hdr.mq.edu.au   Email: masoud.kr@gmail.com
› Author Affiliations
Further Information

Publication History

Received: 18 September 2016

Accepted after revision: 24 October 2016

Publication Date:
05 December 2016 (online)


Dedicated to the memory of Dr. Walter Hünlich

Abstract

The production of azo derivatives of a di-amino analogue of Tröger’s base (Hünlich base), by employing the standard procedures of diazotization, azo-coupling and Williamson etherification is described here. These versatile molecules possess a Λ-shaped core, photoswitchable groups and some carry two modifiable extremities to enable further synthesis or molecular assembly. The synthesis is straightforward and requires inexpensive starting materials, which facilitates their application to different fields of research such as light-driven molecular machine design.

Supporting Information

 
  • References

  • 1 White TJ, McConney ME, Bunning TJ. J. Mater. Chem. 2010; 20: 9832
  • 2 Wang D, Wang X. Prog. Polym. Sci. 2013; 38: 271
  • 3 Mathews M, Zola RS, Yang D.-k, Li Q. J. Mater. Chem. 2011; 21: 2098
    • 4a Alam MZ, Yoshioka T, Ogata T, Nonaka T, Kurihara S. Liq. Cryst. 2007; 34: 1215
    • 4b Finden JG, Yuh E, Huntley C, Lemieux RP. Liq. Cryst. 2007; 34: 1095
    • 4c Cui Q, Huntley CM, Lemieux RP. J. Mater. Chem. 2009; 19: 5188
    • 5a Cui Q, Lemieux RP. J. Mater. Chem. C 2013; 1: 1011
    • 5b Boulton CJ, Sutherland JJ, Lemieux RP. J. Mater. Chem. 2003; 13: 644
    • 5c Boulton CJ, Finden JG, Yuh E, Sutherland JJ, Wand MD, Wu G, Lemieux RP. J. Am. Chem. Soc. 2005; 127: 13656
    • 6a Morris SM, Qasim MM, Cheng KT, Castles F, Ko DH, Gardiner DJ, Nosheen S, Wilkinson TD, Coles HJ, Burgess C, Hill L. Appl. Phys. Lett. 2013; 103: 101105
    • 6b Kwon H.-K, Lee K.-T, Hur K, Moon SH, Quasim MM, Wilkinson TD, Han J.-Y, Ko H, Han I.-K, Park B, Min BK, Ju B.-K, Morris SM, Friend RH, Ko D.-H. Adv. Energy Mater. 2015; 5: 1401347
  • 7 Li Q, Green L, Venkataraman N, Shiyanovskaya I, Khan A, Urbas A, Doane JW. J. Am. Chem. Soc. 2007; 129: 12908
  • 8 Jin O, Fu D, Ge Y, Wei J, Guo J. New J. Chem. 2015; 39: 254
    • 9a Li Q. Nanoscience with Liquid Crystals. Springer; Ohio: 2014
    • 9b Zhao Y, Ikeda T. Smart Light-Responsive Materials: Azobenzene-Containing Polymers and Liquid Crystals. Vol. 1. John Wiley & Sons Inc; New Jersey: 2009
    • 9c Eelkema R. Liq. Cryst. 2011; 38: 1641
    • 9d Kim D.-Y, Lee S.-A, Choi Y.-J, Hwang S.-H, Kuo S.-W, Nah C, Lee M.-H, Jeong K.-U. Chem. Eur. J. 2014; 20: 5689
    • 10a Yoshioka T, Ogata T, Nonaka T, Moritsugu M, Kim S.-N, Kurihara S. Adv. Mater. (Weinheim, Ger.) 2005; 17: 1226
    • 10b Kurihara S, Yoshioka T, Moritsugu M, Ogata T, Nonaka T. Mol. Cryst. Liq. Cryst. 2005; 443: 69
  • 11 Tröger J. J. Prakt. Chem. 1887; 36: 225
  • 12 Rigol S, Beyer L, Hennig L, Sieler J, Giannis A. Org. Lett. 2013; 15: 1418
  • 13 Sergeyev S. Helv. Chim. Acta 2009; 92: 415
  • 14 Kiehne U, Weilandt T, Lützen A. Org. Lett. 2007; 9: 1283
    • 15a Satishkumar S, Periasamy M. Tetrahedron: Asymmetry 2009; 20: 2257
    • 15b Goswami S, Ghosh K, Dasgupta S. J. Org. Chem. 2000; 65: 1907
    • 15c Adrian J, Wilcox C. J. Am. Chem. Soc. 1989; 111: 8055
    • 15d Adrian J, Wilcox C. J. Am. Chem. Soc. 1992; 114: 1398
    • 15e Boyle EM, Comby S, Molloy JK, Gunnlaugsson T. J. Org. Chem. 2013; 78: 8312
    • 15f Valík M, Strongin RM, Král V. Supramol. Chem. 2005; 17: 347
    • 16a Tatar A, Cejka J, Kral V, Dolensky B. Org. Lett. 2010; 12: 1872
    • 16b Sergeyev S, Diederich F. Angew. Chem. Int. Ed. 2004; 43: 1738
    • 16c Havlik M, Kral V, Kaplanek R, Dolensky B. Org. Lett. 2008; 10: 4767
  • 17 Wilen SH, Qi JZ, Williard PG. J. Org. Chem. 1991; 56: 485
  • 18 Sergeyev S, Diederich F. Chirality 2006; 18: 707
  • 19 Valík M, Dolenský B, Herdtweck E, Král V. Tetrahedron: Asymmetry 2005; 16: 1969
  • 20 Jameson DL, Field T, Schmidt MR, DeStefano AK, Stiteler CJ, Venditto VJ, Krovic B, Hoffman CM, Ondisco MT, Belowich ME. J. Org. Chem. 2013; 78: 11590
  • 21 Ohtake T. Tellus, Ser. B 1993; 45: 138
  • 22 Sergeyev S, Didier D, Boitsov V, Teshome A, Asselberghs I, Clays K, Vande Velde CM. L, Plaquet A, Champagne B. Chem. Eur. J. 2010; 16: 8181
  • 23 Goswami S, Ghosh K, Halder M. Tetrahedron Lett. 1999; 40: 1735
  • 24 Hamada Y, Mukai S. Tetrahedron: Asymmetry 1996; 7: 2671
    • 25a Rück-Braun K, Kempa S, Priewisch B, Richter A, Seedorff S, Wallach L. Synthesis 2009; 4256
    • 25b Kitzig S, Thilemann M, Cordes T, Rück-Braun K. ChemPhysChem 2016; 17: 1252
    • 26a Michon C, Sharma A, Bernardinelli G, Francotte E, Lacour J. Chem. Commun. 2010; 46: 2206
    • 26b Häring M. Helv. Chim. Acta 1963; 46: 2970
    • 26c Cooper F, Partridge M. J. Chem. Soc. 1957; 2888
  • 27 Han MR, Hara M. New J. Chem. 2006; 30: 223