Synthesis 2017; 49(14): 3069-3083
DOI: 10.1055/s-0036-1589031
short review
© Georg Thieme Verlag Stuttgart · New York

Advantages of the Microwave Tool in Organophosphorus Syntheses

György Keglevich*
Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1521 Budapest, Hungary   Email: gkeglevich@mail.bme.hu
,
Nóra Zsuzsa Kiss
Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1521 Budapest, Hungary   Email: gkeglevich@mail.bme.hu
,
Alajos Grün
Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1521 Budapest, Hungary   Email: gkeglevich@mail.bme.hu
,
Erika Bálint
Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1521 Budapest, Hungary   Email: gkeglevich@mail.bme.hu
,
Tamara Kovács
Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1521 Budapest, Hungary   Email: gkeglevich@mail.bme.hu
› Author Affiliations
This project was supported by the Hungarian Research Development and Innovation Fund (K119202).
Further Information

Publication History

Received: 14 March 2017

Accepted after revision: 11 April 2017

Publication Date:
20 June 2017 (online)


Abstract

The microwave (MW) technique has become an important tool also in the organophosphorus field of organic chemistry. On the one hand, otherwise reluctant reactions, such as the esterification of P-acids, may be enhanced by the effect of MW, while on the other hand, catalysts may be omitted, or catalyst systems may be simplified on MW irradiation. This later group includes the Kabachnik–Fields reactions, alkylation of active methylene-containing compounds, O-alkylations, deoxygenations, as well as the Hirao reaction. It is also the purpose of this review to elucidate the scope and limitations of the MW tool, to interpret the MW effects, and to model the distribution of local overheatings and their beneficial effect.

1 Introduction

2 The Esterification of Phosphinic Acids

2.1 Synthetic Results

2.2 Scope and Limitation of the Application of MWs

2.3 Modelling the Distribution of the Local Overheatings and Predicting­ Their Effect

3 The Simplification of Catalytic Systems

3.1 Replacement of the Catalyst by MW Irradiation

3.1.1 The Kabachnik–Fields Reaction

3.1.2 Solid–Liquid Phase Alkylation of Active Methylene-Containing Compounds

3.1.3 Solid–Liquid Phase Alkylation of Phosphinic Acids

3.1.4 The Deoxygenation of Phosphine Oxides

3.2 The Hirao Reaction without Added P-Ligands

4 Conclusions

 
  • References

  • 1 Microwave-Assisted Organic Synthesis . Tierney JP. Lidsröm P. Blackwell; Oxford: 2005
  • 2 Microwaves in Organic Synthesis . de la Hoz A. Loupy A. Wiley-VCH; Weinheim: 2012
  • 3 Milestones in Microwave Chemistry (SpringerBriefs in Molecular Science). Keglevich G. Springer; Switzerland: 2016
  • 4 Kranjc K. Kočevar M. Curr. Org. Chem. 2010; 14: 1050
  • 5 Guenin E. Meziane D. Curr. Org. Chem. 2011; 15: 3465
  • 6 Keglevich G. Grün A. Bálint E. Kiss NZ. Jablonkai E. Curr. Org. Chem. 2013; 17: 545
  • 7 Keglevich G. Greiner I. Curr. Green Chem. 2014; 1: 2
  • 8 Keglevich G. Kiss N. Mucsi Z. Jablonkai E. Bálint E. Green Process Synth. 2014; 3: 103
  • 9 Keglevich G. Phosphorus, Sulfur, Silicon Relat. Elem. 2014; 189: 1266
  • 10 Keglevich G. In Green Synthetic Approaches for Biologically Relevant Heterocycles . Brahmachari G. Elsevier; Amsterdam: 2015: 559
  • 11 Keglevich G. Grün A. Bagi P. Bálint E. Kiss NZ. Kovács R. Jablonkai E. Kovács T. Fogassy E. Greiner I. Period. Polytech., Chem. Eng. 2015; 59: 82
  • 12 Kiss NZ. Bálint E. Keglevich G. In Milestones in Microwave Chemistry (SpringerBriefs in Molecular Science) . Keglevich G. Springer; Switzerland: 2016. Chap. 2, 11
  • 13 Bana P. Greiner I. In Milestones in Microwave Chemistry (SpringerBriefs in Molecular Science), Keglevich G. Springer; Switzerland: 2016. Chap. 4 77
  • 14 Perreux L. Loupy A. Tetrahedron 2001; 57: 9199
  • 15 Miklavc A. ChemPhysChem 2001; 2: 552
  • 16 Binner JG. P. Hassine NA. Cross TE. J. Mater. Sci. 1995; 30: 5389
  • 17 Yadav GD. Bisht PM. J. Mol. Catal. A: Chem. 2005; 236: 54
  • 18 Kappe CO. Pieber B. Dallinger D. Angew. Chem. Int. Ed. 2013; 52: 1088
  • 19 de la Hoz A. Díaz-Ortiz A. Moreno A. Chem. Soc. Rev. 2005; 34: 164
  • 20 Kuhnert N. Angew. Chem. Int. Ed. 2002; 41: 1863
  • 21 Hayes BL. Microwave Synthesis: Chemistry at the Speed of Light . CEM Publishing; Matthews NC: 2002: 23
  • 22 Yeboah KA. Boyd JD. Kyeremateng KA. Shepherd CC. Ingersoll IM. Jackson DL. Jr. Holland AW. React. Kinet., Mech. Catal. 2014; 112: 295
  • 23 Rosana MR. Tao Y. Stiegman AE. Dudley GB. Chem. Sci. 2012; 3: 1240
  • 24 Rosana MR. Hunt J. Ferrari A. Southworth TA. Tao Y. Stiegman AE. Dudley GB. J. Org. Chem. 2014; 79: 7437
  • 25 Chen P.-K. Rosana MR. Dudley GB. Stiegman AE. J. Org. Chem. 2014; 79: 7425
  • 26 Kiss NZ. Keglevich G. Curr. Org. Chem. 2014; 18: 2673
  • 27 Kiss NZ. Ludányi K. Drahos L. Keglevich G. Synth. Commun. 2009; 39: 2392
  • 28 Keglevich G. Bálint E. Kiss NZ. Jablonkai E. Hegedűs L. Grün A. Greiner I. Curr. Org. Chem. 2011; 15: 1802
  • 29 Kiss NZ. Böttger É. Drahos L. Keglevich G. Heteroat. Chem. 2013; 24: 283
  • 30 Kiss NZ. Keglevich G. Tetrahedron Lett. 2016; 57: 971
  • 31 Keglevich G. Kiss NZ. Drahos L. Körtvélyesi T. Tetrahedron Lett. 2013; 54: 466
  • 32 Keglevich G. Kiss NZ. Körtvélyesi T. Heteroat. Chem. 2013; 24: 91
  • 33 Kiss NZ. Simon A. Drahos L. Huben K. Jankowski S. Keglevich G. Synthesis 2013; 45: 199
  • 34 Kiss NZ. Mucsi Z. Böttger É. Drahos L. Curr. Org. Synth. 2014; 11: 767
  • 35 Mucsi Z. Kiss NZ. Keglevich G. RSC Adv. 2014; 4: 11948
  • 36 Keglevich G. Kiss NZ. Mucsi Z. Körtvélyesi T. Org. Biomol. Chem. 2012; 10: 2011
  • 37 de Cózar A. Millán MC. Cebrián C. Prieto P. Díaz-Ortiz A. de la Hoz A. Cossío FP. Org. Biomol. Chem. 2010; 8: 1000
  • 38 Rodríguez AM. Prieto P. de la Hoz A. Díaz-Ortiz A. García JI. Org. Biomol. Chem. 2014; 12: 2436
  • 39 Rodríguez AM. Prieto P. de la Hoz A. Díaz-Ortiz Á. Martín DR. García JI. ChemistryOpen 2015; 4: 308-1363 ; http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)2191
  • 40 Prieto P. de la Hoz A. Diaz-Ortiz A. Rodriguez AM. Chem. Soc. Rev. 2017; 46: 431
  • 41 Keglevich G. Kiss NZ. Jablonkai E. Bálint E. Mucsi Z. Phosphorus, Sulfur, Silicon Relat. Elem. 2015; 190: 647
  • 42 Keglevich G. Greiner I. Mucsi Z. Curr. Org. Chem. 2015; 19: 1436
  • 43 Keglevich G. Kiss NZ. Mucsi Z. Pure Appl. Chem. 2016; 88: 931
  • 44 Keglevich G. Kiss NZ. Mucsi Z. Curr. Phys. Chem. 2017; DOI: 10.2174/1877946806666161103142955.
  • 45 Kabachnik MI. Medved TY. Dokl. Akad. Nauk SSSR 1952; 83: 689
  • 46 Fields EK. J. Am. Chem. Soc. 1952; 74: 1528
  • 47 Cherkasov RA. Galkin VI. Russ. Chem. Rev. 1998; 67: 857
  • 48 Kukhar VP. Hudson HR. Aminophosphonic and Aminophosphinic Acids: Chemistry and Biological Activity. Wiley; Chichester: 2000
  • 49 Mucha A. Kafarski P. Berlicki L. J. Med. Chem. 2011; 54: 5955
  • 50 Allen JG. Atherton FR. Hall MJ. Hassall CH. Holmes SW. Lambert RW. Nisbet LJ. Ringrose PS. Nature (London) 1978; 272: 56
  • 51 Lavielle G. Hautefaye P. Schaeffer C. Boutin JA. Cudennec CA. Pierre A. J. Med. Chem. 1991; 34: 1998
  • 52 Grembecka J. Mucha A. Cierpicki T. Kafarski P. J. Med. Chem. 2003; 46: 2641
  • 53 Sieńczyk M. Oleksyszyn J. Curr. Med. Chem. 2009; 16: 1673
  • 54 Forlani G. Berlicki L. Duo M. Dziedziola G. Giberti S. Bertazzini M. Kafarski P. J. Agric. Food Chem. 2013; 61: 6792
  • 55 Forlani G. Occhipinti A. Berlicki Ł. Dziędzioła G. Wieczorek A. Kafarski P. J. Agric. Food Chem. 2008; 56: 3193
  • 56 Long N. Cai XJ. Song BA. Yang S. Chen Z. Bhadury PS. Hu DY. Jin LH. Xue W. J. Agric. Food Chem. 2008; 56: 5242
  • 57 Matveeva ED. Podrugina TA. Tishkovskaya EV. Tomilova LG. Zefirov NS. Synlett 2003; 2321
  • 58 Firouzabadi H. Iranpoor N. Sobhani S. Synthesis 2004; 2692
  • 59 Lee S. Park JH. Kang J. Lee JK. Chem. Commun. 2001; 1698
  • 60 Lee S. Lee JK. Song CE. Kim D.-C. Bull. Korean Chem. Soc. 2002; 23: 667
  • 61 Sun P. Hu Z. Huang Z. Synth. Commun. 2004; 34: 4293
  • 62 Bhattacharya AK. Kaur T. Synlett 2007; 745
  • 63 Xu F. Luo Y. Deng M. Shen Q. Eur. J. Org. Chem. 2003; 4728
  • 64 Ranu BC. Hajra A. Jana U. Org. Lett. 1999; 1: 1141
  • 65 Bhagat S. Chakraborti AK. J. Org. Chem. 2007; 72: 1263
  • 66 Wu J. Sun W. Xia H.-G. Sun X. Org. Biomol. Chem. 2006; 4: 1663
  • 67 Keglevich G. Szekrényi A. Lett. Org. Chem. 2008; 5: 616
  • 68 Keglevich G. Bálint E. Molecules 2012; 17: 12821
  • 69 Kafarski P. Górniak MG. Andrasiak I. Curr. Green Chem. 2015; 2: 218
  • 70 Prauda I. Greiner I. Ludányi K. Keglevich G. Synth. Commun. 2007; 37: 317
  • 71 Bálint E. Takács J. Drahos L. Juranovic A. Kocevar M. Keglevich G. Heteroat. Chem. 2013; 24: 221
  • 72 Tajti Á. Bálint E. Keglevich G. Curr. Org. Synth. 2016; 13: 638
  • 73 Bálint E. Tripolszky A. Jablonkai E. Karaghiosoff K. Czugler M. Mucsi Z. Kollár L. Pongrácz P. Keglevich G. J. Organomet. Chem. 2016; 801: 111
  • 74 Petrov KA. Chauzov VA. Erokhina TS. Chernobrovkina LP. Zh. Obsh. Khim. 1976; 46: 493
  • 75 Petrov KA. Chauzov VA. Erokhina TS. Khim. Elementoorg. Soedin. 1976; 200
  • 76 Garifzyanov AR. Vasil’ev RI. Cherkasov RA. Russ. J. Gen. Chem. 2005; 75: 217
  • 77 Keglevich G. Szekrényi A. Szöllősy Á. Drahos L. Synth. Commun. 2011; 41: 2265
  • 78 Bálint E. Fazekas E. Pintér G. Szöllősy Á. Holczbauer T. Czugler M. Drahos L. Körtvélyesi T. Keglevich G. Curr. Org. Chem. 2012; 16: 547
  • 79 Bálint E. Fazekas E. Pongrácz P. Kollár L. Drahos L. Holczbauer T. Czugler M. Keglevich G. J. Organomet. Chem. 2012; 717: 75
  • 80 Bálint E. Fazekas E. Drahos L. Keglevich G. Heteroat. Chem. 2013; 24: 510
  • 81 Bálint E. Fazekas E. Kóti J. Keglevich G. Heteroat. Chem. 2015; 26: 106
  • 82 Deshayes S. Liagre M. Loupy A. Luche J.-L. Petit A. Tetrahedron 1999; 55: 10851
  • 83 Wang Y. Deng R. Mi A. Jiang Y. Synth. Commun. 1995; 25: 1761
  • 84 Deng R. Wang Y. Jiang Y. Synth. Commun. 1994; 24: 111
  • 85 Deng R. Wang Y. Jiang Y. Synth. Commun. 1994; 24: 1917
  • 86 Keglevich G. Novák T. Vida L. Greiner I. Green Chem. 2006; 8: 1073
  • 87 Keglevich G. Majrik K. Vida L. Greiner I. Lett. Org. Chem. 2008; 5: 224
  • 88 Grün A. Bálint E. Keglevich G. Catalysts 2015; 5: 634
  • 89 Greiner I. Grün A. Ludányi K. Keglevich G. Heteroat. Chem. 2011; 22: 11
  • 90 Keglevich G. Grün A. Blastik Z. Greiner I. Heteroat. Chem. 2011; 22: 174
  • 91 Grün A. Blastik Z. Drahos L. Keglevich G. Heteroat. Chem. 2012; 23: 241
  • 92 Grün A. Blastik Z. Drahos L. Keglevich G. Heteroat. Chem. 2014; 25: 107
  • 93 Grün A. Molnár IG. Bertók B. Greiner I. Keglevich G. Heteroat. Chem. 2009; 20: 350
  • 94 Keglevich G. Grün A. Molnár IG. Greiner I. Heteroat. Chem. 2011; 22: 640
  • 95 Tokutake N. Hiratake J. Katoh M. Irie T. Kato H. Oda J. Bioorg. Med. Chem. 1998; 6: 1935
  • 96 Martin MT. Angeles TS. Sugasawara R. Aman NI. Napper AD. Darsley MJ. Sanchez RI. Booth P. Titmas RC. J. Am. Chem. Soc. 1994; 116: 6508
  • 97 Golubski ZE. Synthesis 1980; 632
  • 98 Bálint E. Jablonkai E. Bálint M. Keglevich G. Heteroat. Chem. 2010; 21: 211
  • 99 Hérault D. Nguyen DH. Nuel D. Buono G. Chem. Soc. Rev. 2015; 44: 2508
  • 100 Kovács T. Keglevich G. Curr. Org. Chem. 2017; 21: 569
  • 101 O'Brien CJ. Tellez JL. Nixon ZS. Kang LJ. Carter AL. Kunkel SR. Przeworski KC. Chass GA. Angew. Chem. Int. Ed. 2009; 48: 6836
  • 102 O’Brien CJ. Nixon ZS. Holohan AJ. Kunkel SR. Tellez JL. Doonan BJ. Coyle EE. Lavigne F. Kang LJ. Przeworski KC. Chem. Eur. J. 2013; 19: 15281
  • 103 O’Brien CJ. Lavigne F. Coyle EE. Holohan AJ. Doonan BJ. Chem. Eur. J. 2013; 19: 5854
  • 104 Coyle EE. Doonan BJ. Holohan AJ. Walsh KA. Lavigne F. Krenske EH. O’Brien CJ. Angew. Chem. Int. Ed. 2014; 53: 12907
  • 105 Fritzsche H. Hasserodt U. Korte F. Chem. Ber. 1965; 98: 171
  • 106 Quin LD. Caster KC. Kisalus JC. Mesch KA. J. Am. Chem. Soc. 1984; 106: 7021
  • 107 Fritzsche H. Hasserodt U. Korte F. Chem. Ber. 1964; 97: 1988
  • 108 Demchuk OM. Jasiński R. Pietrusiewicz KM. Heteroat. Chem. 2015; 26: 441
  • 109 Li YH. Das S. Zhou SL. Junge K. Beller M. J. Am. Chem. Soc. 2012; 134: 9727
  • 110 Berthod M. Favre-Réguillon A. Mohamad J. Mignani G. Docherty G. Lemaire M. Synlett 2007; 1545
  • 111 Petit C. Favre-Réguillon A. Albela B. Bonneviot L. Mignani G. Lemaire M. Organometallics 2009; 28: 6379
  • 112 Pehlivan L. Metay E. Delbrayelle D. Mignani G. Lemaire M. Tetrahedron 2012; 68: 3151
  • 113 Coumbe T. Lawrence NJ. Muhammad F. Tetrahedron Lett. 1994; 35: 625
  • 114 Li YH. Lu LQ. Das S. Pisiewicz S. Junge K. Beller M. J. Am. Chem. Soc. 2012; 134: 18325
  • 115 Keglevich G. Kovács T. Csatlós F. Heteroat. Chem. 2015; 26: 199
  • 116 Kovács T. Urbanics A. Csatlós F. Binder J. Falk A. Uhlig F. Keglevich G. Curr. Org. Synth. 2016; 13: 148
  • 117 Keglevich G. Kovács T. Curr. Green Chem. 2014; 1: 182
  • 118 Kovács T. Urbanics A. Csatlós F. Keglevich G. Heteroat. Chem. 2017; DOI: in press.
  • 119 Kovács T. Keglevich G. Phosphorus, Sulfur, Silicon Relat. Elem. 2016; 191: 359
  • 120 Kovács T. Csatlós F. Urbanics A. Uhlig F. Keglevich G. Phosphorus, Sulfur, Silicon Relat. Elem. 2016; 191: 1597
  • 121 Hirao T. Masunaga T. Ohshiro Y. Agawa T. Tetrahedron Lett. 1980; 21: 3595
  • 122 Hirao T. Masunaga T. Yamada N. Ohshiro Y. Agawa T. Bull. Chem. Soc. Jpn. 1982; 55: 909
  • 123 Jablonkai E. Keglevich G. Curr. Org. Synth. 2014; 11: 429
  • 124 Jablonkai E. Keglevich G. Org. Prep. Proced. Int. 2014; 46: 281
  • 125 Kalek M. Ziadi A. Stawinski J. Org. Lett. 2008; 10: 4637
  • 126 Andaloussi M. Lindh J. Sävmarker J. Sjöberg PJ. R. Larhed M. Chem. Eur. J. 2009; 15: 13069
  • 127 Villemin D. Jaffrès P.-A. Simèon F. Phosphorus, Sulfur, Silicon Relat. Elem. 1997; 130: 59
  • 128 Julienne D. Lohier J.-F. Delacroix O. Gaumont A.-C. J. Org. Chem. 2007; 72: 2247
  • 129 Rummelt SM. Ranocchiari M. van Bokhoven JA. Org. Lett. 2012; 14: 2188
  • 130 Novikova ZS. Demik NN. Agarkov AYu. Beletskaya IP. Russ. J. Org. Chem. 1995; 31: 129
  • 131 Kabachnik MM. Solntseva MD. Izmer VV. Novikova ZS. Beletskaya IP. Russ. J. Org. Chem. 1998; 34: 93
  • 132 Beletskaya IP. Neganova EG. Veits YuA. Russ. J. Org. Chem. 2004; 40: 1782
  • 133 Beletskaya IP. Karlstedt NB. Nifant’ev EE. Khodarev DV. Kukhareva TS. Nikolaev AV. Ross AJ. Russ. J. Org. Chem. 2006; 42: 1780
  • 134 Keglevich G. Grün A. Bölcskei A. Drahos L. Kraszni M. Balogh GT. Heteroat. Chem. 2012; 23: 574
  • 135 Jablonkai E. Keglevich G. Tetrahedron Lett. 2013; 54: 4185
  • 136 Keglevich G. Jablonkai E. Balázs LB. RSC Adv. 2014; 4: 22808
  • 137 Amaya T. Abe Y. Inada Y. Hirao T. Tetrahedron Lett. 2014; 55: 3976
  • 138 Xiong B. Li M. Liu Y. Zhou Y. Zhao C. Goto M. Yin S.-F. Han L.-B. Adv. Synth Catal. 2014; 356: 781
  • 139 Jablonkai E. Balázs LB. Keglevich G. Curr. Org. Chem. 2015; 19: 197
  • 140 Jablonkai E. Keglevich G. Tetrahedron Lett. 2015; 56: 1638