Synthesis 2017; 49(23): 5081-5092
DOI: 10.1055/s-0036-1589515
review
© Georg Thieme Verlag Stuttgart · New York

Cu-Catalyzed Cascade Annulation of Diaryliodonium Salts and Nitriles: Synthesis of Nitrogen-Containing Heterocycles

Chengyao Kimmy Cao
Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education, MOE), Department of Chemistry and the Graduate School at Shenzhen, Tsinghua University, Beijing 100084, P. R. of China   Email: chenchao01@mails.tsinghua.edu.cn
,
Jinyu Sheng
Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education, MOE), Department of Chemistry and the Graduate School at Shenzhen, Tsinghua University, Beijing 100084, P. R. of China   Email: chenchao01@mails.tsinghua.edu.cn
,
Chao Chen*
Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education, MOE), Department of Chemistry and the Graduate School at Shenzhen, Tsinghua University, Beijing 100084, P. R. of China   Email: chenchao01@mails.tsinghua.edu.cn
› Author Affiliations
This work was supported by the National Natural Science Foundation of China (21372138 and 21672120), the Fok Ying Tong Education Foundation of China (Grant No. 151014) and The National Key Research and Development Program of China (2016YFB0401400).
Further Information

Publication History

Received: 18 June 2017

Accepted after revision: 02 August 2017

Publication Date:
11 October 2017 (online)


Abstract

Developing versatile methodologies to construct various nitrogen­-containing heterocycles is a crucially significant part of contemporary organic chemistry. This review summarizes recent developments on the formation of nitrogen-containing heterocycles triggered by diaryliodonium salts. Diaryliodonium salts, as electrophilic arylating agents in the presence of catalytic copper salts, can react with nitriles to give N-arylnitrilium cations, which are highly reactive species. These species can efficiently react with nucleophiles, including C-, N- and O-nucleophiles, to give the corresponding products. This strategy is not only efficient and convenient, but also enables the synthesis of diverse nitrogen-containing heterocycles such as quinolines, quinazolines, and phenanthridines.

1 Introduction

2 Strategies and Mechanisms

3 Cascade Annulations

3.1 Cascade Annulation of Diaryliodoniums, Nitriles and C-Nucleo­philes

3.2 Cascade Annulation of Diaryliodoniums, Nitriles and N-Nucleo­philes

3.3 Cascade Annulation of Diaryliodoniums, Nitriles and O-Nucleo­philes

4 Summary and Outlook

 
  • References


    • For reviews on nitrogen-containing heterocycles, see:
    • 1a Bergstrom FW. Chem. Rev. 1944; 35: 77
    • 1b Molina P. Vilaplana MJ. Synthesis 1994; 1197
    • 1c Deiters A. Martin SF. Chem. Rev. 2004; 104: 2199
    • 1d Yamamoto Y. Chem. Soc. Rev. 2014; 43: 1575
    • 1e Properzi R. Marcantoni E. Chem. Soc. Rev. 2014; 43: 779
    • 1f Wu X.-F. Neumann H. Beller M. Chem. Rev. 2013; 113: 1
    • 1g He R. Huang Z.-T. Zhen Q.-Y. Wang C. Tetrahedron Lett. 2014; 55: 5705
    • 2a Andrews S. Burgess SJ. Skaalrud D. Kelly JX. Peyton DH. J. Med. Chem. 2010; 53: 916
    • 2b Kaur K. Jain M. Reddy RP. Jain R. Eur. J. Med. Chem. 2010; 45: 3245
    • 2c Gorka AP. de Dios A. Roepe PD. J. Med. Chem. 2013; 56: 5231
    • 2d Afzal O. Kumar S. Haider MR. Ali MR. Kumar R. Jaggi M. Bawa S. Eur. J. Med. Chem. 2015; 97: 871
    • 3a Ishikawa T. Med. Res. Rev. 2001; 21: 61
    • 3b Kock I. Heber D. Weide M. Wolschendorf U. Clement B. J. Med. Chem. 2005; 48: 2772
    • 3c Stevens N. O’Connor N. Vishwasrao H. Samaroo D. Kandel ER. Akins DL. Drain CM. Turro NJ. J. Am. Chem. Soc. 2008; 130: 7182
    • 3d Bernardo PH. Wan K.-F. Sivaraman T. Xu J. Moore FK. Hung AW. Mok HY. K. Yu VC. Chai CL. L. J. Med. Chem. 2008; 51: 6699
    • 3e Cappoen D. Claes P. Jacobs J. Anthonissen R. Mathys V. Verschaeve L. Huygen K. De Kimpe N. J. Med. Chem. 2014; 57: 2895
    • 3f Naidu KM. Nagesh HN. Singh M. Sriram D. Yogeeswari P. Sekhar KV. G. C. Eur. J. Med. Chem. 2015; 92: 415
    • 4a Henderson EA. Bavetsias V. Theti DS. Wilson SC. Clauss R. Jackman AL. Bioorg. Med. Chem. 2006; 14: 5020
    • 4b Khan I. Ibrar A. Abbas N. Saeed A. Eur. J. Med. Chem. 2014; 76: 193
    • 4c Khan I. Ibrar A. Ahmed W. Saeed A. Eur. J. Med. Chem. 2015; 90: 124
    • 4d Khan I. Zaib S. Batool S. Abbas N. Ashraf Z. Iqbal J. Saeed A. Bioorg. Med. Chem. 2016; 24: 2361
    • 5a Jagtap PG. Southan GJ. Baloglu E. Ram S. Mabley JG. Marton A. Salzman A. Szabo C. Bioorg. Med. Chem. Lett. 2004; 14: 81
    • 5b Pathare RS. Sharma S. Elagandhula S. Saini V. Sawant DM. Yadav M. Sharon A. Khan S. Pardasani RT. Eur. J. Org. Chem. 2016; 33: 5579
    • 6a Kline T. Andersen NH. Harwood EA. Bowman J. Malanda A. Endsley S. Erwin AL. Doyle M. Fong S. Harris AL. Mendelsohn B. Mdluli K. Raetz CR. H. Stover CK. Witte PR. Yabannavar A. Zhu S. J. Med. Chem. 2002; 45: 3112
    • 6b Pirrung MC. Tumey LN. McClerren AL. Raetz CR. H. J. Am. Chem. Soc. 2003; 125: 1575
    • 6c Lee W.-C. Shen H.-C. Hu W.-P. Lo W.-S. Murali C. Vandavasi JK. Wang J.-J. Adv. Synth. Catal. 2012; 354: 2218

      For quinolines, see:
    • 7a Reitsema RH. Chem. Rev. 1948; 43: 43
    • 7b Manske RH. F. Kukla M. Org. React. 1953; 7: 59
    • 7c Cheng C.-C. Yan S.-J. Org. React. 1982; 28: 37
    • 7d Marco-Contelles J. Perez-Mayoral E. Samadi A. Carreiras MC. Soriano E. Chem. Rev. 2009; 109: 2652
    • 7e Khusnutdinov RI. Bayguzina AR. Dzhemilev UM. J. Organomet. Chem. 2014; 768: 75
    • 7f Prajapati SM. Patel KD. Vekariya RH. Panchal SN. Patel HD. RSC Adv. 2014; 4: 24463
    • 7g Bharate JB. Vishwakarma RA. Bharate SB. RSC Adv. 2015; 5: 42020

      For phenanthridines, see:
    • 8a McBurney RT. Slawin AM. Z. Smart LA. Yu Y. Walton JC. Chem. Commun. 2011; 47: 7974
    • 8b Tobisu M. Koh K. Furukawa T. Chatani N. Angew. Chem. Int. Ed. 2012; 51: 11363
    • 8c Read ML. Gundersen L.-L. J. Org. Chem. 2013; 78: 1311
    • 8d Zhang B. Mück-Lichtenfeld C. Daniliuc CG. Studer A. Angew. Chem. Int. Ed. 2013; 52: 10792
    • 8e Wang Q. Dong X. Xiao T. Zhou L. Org. Lett. 2013; 15: 4846
    • 8f Ge J. Wang X. Liu T. Shi Z. Xiao Q. Yin D. RSC Adv. 2016; 6: 19571
    • 8g Yang J.-C. Zhang J.-J. Guo L.-N. Org. Biomol. Chem. 2016; 14: 9806

      For quinazolines, see: Reviews:
    • 9a Connolly DJ. Cusack D. O’Sullivan TP. Guiry PJ. Tetrahedron 2005; 61: 10153
    • 9b Abdou IM. Al-Neyadi SS. Heterocycl. Commun. 2015; 21: 115

    • Recent articles:
    • 9c Marzaro G. Chilin A. Pastorini G. Guiotto A. Org. Lett. 2006; 8: 255
    • 9d Maheswari CU. Kumar GS. Venkateshwar M. Kumar RA. Kantam ML. Reddy KR. Adv. Synth. Catal. 2010; 352: 341
    • 9e McGowan MA. McAvoy CZ. Buchwald SL. Org. Lett. 2012; 14: 3800
    • 9f Yan Y. Zhang Y. Feng C. Zha Z. Wang Z. Angew. Chem. Int. Ed. 2012; 51: 8077
    • 9g Malakar CC. Baskakova A. Conrad J. Beifuss U. Chem. Eur. J. 2012; 18: 8882
    • 9h Xu C. Jia FC. Zhou ZW. Zheng SJ. Li H. Wu AX. J. Org. Chem. 2016; 81: 3000
    • 9i Wang J. Zha S. Chen K. Zhang F. Song C. Zhu J. Org. Lett. 2016; 18: 2062
    • 9j Wang F. Wang H. Wang Q. Yu S. Li X. Org. Lett. 2016; 18: 1306

      For isoindolines, see:
    • 10a Pigeon P. Decroix B. Tetrahedron Lett. 1998; 39: 8659
    • 10b Couty S. Liégault B. Meyer C. Cossy J. Org. Lett. 2004; 6: 2511
    • 10c Wang Z. Feng C. Xu M. Lin G. J. Am. Chem. Soc. 2007; 129: 5336
    • 10d Cao H. McNamee L. Alper H. Org. Lett. 2008; 10: 5281
    • 10e Li L. Wang M. Zhang X. Jiang Y. Ma D. Org. Lett. 2009; 11: 1309
    • 10f Fujioka M. Morimoto T. Tsumagari T. Tanimoto H. Nishiyama Y. Kakiuchi K. J. Org. Chem. 2012; 77: 2911
    • 10g Xu Y. Hu W. Tang X. Zhao J. Wu W. Jiang H. Chem. Commun. 2015; 51: 6843
    • 10h Hu J. Qin H.-L. Xu W. Li J. Zhang F. Zheng H. Chem. Commun. 2014; 50: 15780
    • 10i Barrio P. Ibáñez I. Herrera L. Román R. Catalán S. Fustero S. Chem. Eur. J. 2015; 21: 11579

      For benzoxazines, see:
    • 11a Bonne D. Dekhane M. Zhu J. Org. Lett. 2005; 7: 5285
    • 11b Fresneda PM. Bleda JA. Sanz MA. Molina P. Synlett 2007; 1541
    • 11c Xiong T. Li Y. Bi X. Lv Y. Zhang Q. Angew. Chem. Int. Ed. 2011; 50: 7140
    • 11d Saito T. Ogawa S. Takei N. Katsumura N. Otani T. Org. Lett. 2011; 13: 1098
    • 11e Li Y. Li Z. Xiong T. Zhang Q. Zhang X. Org. Lett. 2012; 14: 3522
    • 11f Lee W.-C. Shen H.-C. Hu W.-P. Lo W.-S. Murali C. Vandavasi JK. Wang J.-J. Adv. Synth. Catal. 2012; 354: 2218
    • 11g Sinai Á. Mészáros Á. Gáti T. Kudar V. Palló A. Novák Z. Org. Lett. 2013; 15: 5654
    • 11h Yang H. Duan X.-H. Zhao J.-F. Guo L.-N. Org. Lett. 2015; 17: 1998
    • 11i Deng Q.-H. Chen J.-R. Wei Q. Zhao Q.-Q. Lu L.-Q. Xiao W.-J. Chem. Commun. 2015; 51: 3537
    • 11j Cai Z.-J. Yang C. Wang S.-Y. Ji S.-J. Chem. Commun. 2015; 51: 14267

      For reviews on diaryliodonium salts, see:
    • 12a Stang PJ. Zhdankin VV. Tykwinski R. Zefirov NS. Tetrahedron Lett. 1992; 33: 1419
    • 12b Stang PJ. Zhdankin VV. Chem. Rev. 1996; 96: 1123
    • 12c Grushin VV. Chem. Soc. Rev. 2000; 29: 315
    • 12d Zhdankin VV. Stang PJ. Chem. Rev. 2002; 102: 2523
    • 12e Zhdankin VV. Stang PJ. Chem. Rev. 2008; 108: 5299
    • 12f Merritt EA. Olofsson B. Angew. Chem. Int. Ed. 2009; 48: 9052
    • 12g Yusubov MS. Maskaev AV. Zhdankin VV. ARKIVOC 2011; (i): 370
    • 12h Silva LF. Olofsson B. Nat. Prod. Rep. 2011; 28: 1722
    • 12i Bouma JM. Olofsson B. Chem. Eur. J. 2012; 18: 14242
    • 12j Yoshimura A. Zhdankin VV. Chem. Rev. 2016; 116: 3328
    • 12k Aradi K. Tóth BL. Tolnai GL. Novák Z. Synlett 2016; 27: 1456
    • 12l Fañanás-Mastral M. Synthesis 2017; 49: 1905

      For the preparation of diaryliodonium salts, see:
    • 13a Bielawski M. Olofsson B. Chem. Commun. 2007; 43: 2521
    • 13b Bielawski M. Zhu M. Olofsson B. Adv. Synth. Catal. 2007; 349: 2610
    • 13c Bielawski M. Olofsson B. Org. Synth. 2009; 86: 308
    • 13d Skucas E. MacMillan DW. C. J. Am. Chem. Soc. 2012; 134: 9090
    • 14a Davydov DV. Beletskaya IP. Davydov MS. Tetrahedron Lett. 2002; 43: 6221
    • 14b Carrol MA. Wood RA. Tetrahedron 2007; 63: 11349
    • 14c Berzina B. Sokolovs I. Suna E. ACS Catal. 2015; 5: 7008
    • 15a Jalalian N. Ishikawa EE. Silva LF. Olofsson B. Org. Lett. 2011; 13: 1552
    • 15b Jalalian N. Petersen TB. Olofsson B. Chem. Eur. J. 2012; 18: 14140
    • 15c Chan L. McNally A. Toh QY. Mendoza A. Gaunt MJ. Chem. Sci. 2015; 6: 1277
    • 16a Xu J. Zhang P. Gao Y. Chem Y. Tang G. Zhao Y. J. Org. Chem. 2013; 78: 8176
    • 16b Beaud R. Phipps R. Gaunt MJ. J. Am. Chem. Soc. 2016; 138: 13183
  • 17 Ichiishi N. Canty AJ. Yates BY. Sanford MS. Org. Lett. 2013; 15: 5134

    • For recent selected examples, see:
    • 18a Deprez NR. Kalyani D. Krause A. Sanford MS. J. Am. Chem. Soc. 2006; 128: 4972
    • 18b Xiao B. Fu Y. Xu J. Gong T.-J. Dai J.-J. Yi J. Liu L. J. Am. Chem. Soc. 2010; 132: 468
    • 18c Allen AE. MacMillan DW. C. J. Am. Chem. Soc. 2011; 133: 4260
    • 18d Zhu S. MacMillan DW. C. J. Am. Chem. Soc. 2012; 134: 10815
    • 18e Castro S. Fernández JJ. Vicente R. Fañanás FJ. Rodríguez F. Chem. Commun. 2012; 48: 9089
    • 18f Peng J. Chen C. Wang Y. Lou Z.-B. Li M. Xi C. Chen H. Angew. Chem. Int. Ed. 2013; 52: 7574
    • 18g Modha SG. Greaney MF. J. Am. Chem. Soc. 2015; 137: 1416
    • 18h Storr TE. Greaney MF. Org. Lett. 2013; 15: 1410
    • 18i Peng J. Chen C. Xi C. Chem. Sci. 2016; 7: 1383
    • 18j Yang Y. Li R. Zhao Y. Zhao D. Shi Z. J. Am. Chem. Soc. 2016; 138: 8734
    • 18k Gao P. Guo W. Xue J. Zhao Y. Yuan Y. Xia Y. Shi Z. J. Am. Chem. Soc. 2015; 137: 12231
    • 18l Yang Y. Qiu X. Zhao Y. Mu Y. Shi Z. J. Am. Chem. Soc. 2016; 138: 495

      For the Gaunt group’s work, see:
    • 19a Ciana CL. Phipps RJ. Brandt JR. Meyer FM. Gaunt MJ. Angew. Chem. Int. Ed. 2011; 50: 458
    • 19b Duong HA. Gilligan RE. Cooke ML. Phipps RJ. Gaunt MJ. Angew. Chem. Int. Ed. 2011; 50: 463
    • 19c Bigot A. Williamson AE. Gaunt MJ. J. Am. Chem. Soc. 2011; 133: 13778
    • 19d Phipps RJ. McMurray L. Ritter S. Duong HA. Gaunt MJ. J. Am. Chem. Soc. 2012; 134: 10773
    • 19e Collins BS. L. Suero MG. Gaunt MJ. Angew. Chem. Int. Ed. 2013; 52: 5799
    • 19f Suero MG. Bayle ED. Collins BS. L. Gaunt MJ. J. Am. Chem. Soc. 2013; 135: 5332
    • 19g Toh QY. McNally A. Vera S. Erdmann N. Gaunt MJ. J. Am. Chem. Soc. 2013; 135: 3772
    • 19h Walkinshaw AJ. Xu W. Suero MG. Gaunt MJ. J. Am. Chem. Soc. 2013; 135: 12532
    • 20a Cahard E. Bremeyer N. Gaunt MJ. Angew. Chem. Int. Ed. 2013; 52: 9284
    • 20b Peng J. Chen C. Chen J. Su X. Xi C. Chen H. Org. Lett. 2014; 16: 3776
    • 20c Zhang F. Das S. Walkinshaw AJ. Casitas A. Taylor M. Suero M. Gaunt MJ. J. Am. Chem. Soc. 2014; 136: 8851
    • 20d Chen J. Chen C. Chen J. Wang G. Qu H. Chem. Commun. 2015; 51: 1356
    • 20e Wang G. Chen C. Peng J. Chem. Commun. 2016; 52: 10277
    • 21a Phipps RJ. Grimster NP. Gaunt MJ. J. Am. Chem. Soc. 2008; 130: 8172
    • 21b Phipps RJ. Gaunt MJ. Science 2009; 323: 1593
  • 22 Chen B. Hou X.-L. Li Y.-X. Wu Y.-D. J. Am. Chem. Soc. 2011; 133: 7668
  • 23 Ichiishi N. Canty AJ. Yates BF. Sanford MS. Organometallics 2014; 33: 5525
  • 24 Pang X. Chen C. Su X. Li M. Wen L. Org. Lett. 2014; 16: 6228
  • 26 Sheng J. Wang Y. Su X. He R. Chen C. Angew. Chem. Int. Ed. 2017; 56: 4824
  • 27 Wang X. Wang X. Huang D. Liu C. Wang X. Hu Y. Adv. Synth. Catal. 2016; 358: 2332
  • 28 Wang Y. Chen C. Zhang S. Lou Z. Su X. Wen L. Li M. Org. Lett. 2013; 15: 4794
  • 29 Aradi K. Bombicz P. Novák Z. J. Org. Chem. 2016; 81: 920
  • 30 Li J. Wang H. Sun J. Yang Y. Liu L. Org. Biomol. Chem. 2014; 12: 7904
  • 31 Zhang L. Wang Y. Zheng L. Guo B. Hua R. Tetrahedron 2017; 73: 395
  • 32 Su X. Chen C. Wang Y. Peng J. Lou Z.-B. Li M. Chem. Commun. 2013; 49: 6752
  • 33 Aradi K. Novák Z. Adv. Synth. Catal. 2015; 357: 371
  • 34 Sheng J. Su X. Cao C. Chen C. Org. Chem. Front. 2016; 3: 501
  • 35 Liu L. Qiang J. Bai S.-H. Sung H.-L. Miao CB. Li J. Adv. Synth. Catal. 2017; 359: 1283