Synthesis 2017; 49(15): 3476-3484
DOI: 10.1055/s-0036-1590471
paper
© Georg Thieme Verlag Stuttgart · New York

Triazolylidene Ligands Allow Cobalt-Catalyzed C–H/C–O Alkenyl­ations at Ambient Temperature

Nicolas Sauermann
a   Institut für Organische und Biomolekulare Chemie, Georg-August-Universität, Tammannstraße 2, 37077 Göttingen, Germany   Email: Lutz.Ackermann@chemie.uni-goettingen.de
,
Joachim Loup
a   Institut für Organische und Biomolekulare Chemie, Georg-August-Universität, Tammannstraße 2, 37077 Göttingen, Germany   Email: Lutz.Ackermann@chemie.uni-goettingen.de
,
Darius Kootz
b   Department für Chemie, Organische Chemie, Universität zu Köln, Greinstraße 4, 50939 Köln, Germany
,
V. Reddy Yatham
b   Department für Chemie, Organische Chemie, Universität zu Köln, Greinstraße 4, 50939 Köln, Germany
,
Albrecht Berkessel
b   Department für Chemie, Organische Chemie, Universität zu Köln, Greinstraße 4, 50939 Köln, Germany
,
Lutz Ackermann*
a   Institut für Organische und Biomolekulare Chemie, Georg-August-Universität, Tammannstraße 2, 37077 Göttingen, Germany   Email: Lutz.Ackermann@chemie.uni-goettingen.de
› Author Affiliations
Generous support by the DFG (SPP 1807 ‘Control of London dispersion in molecular chemistry’) and the CaSuS PhD Programme (fellowship to N.S.) is gratefully acknowledged.
Further Information

Publication History

Received: 21 April 2017

Accepted: 25 April 2017

Publication Date:
12 June 2017 (online)


Dedicated to Prof. Dr. Herbert Mayr

Abstract

Direct alkenylation through C–H/C–O cleavage was accomplished under mild reaction conditions by cobalt catalysts derived from novel triazolylidene ligands. The most effective ligand is characterized by sterically demanding substituents on the 1,4-N-atoms of the triazolylidene neighboring the carbene center. The C–H alkenylations proved viable with alkenyl acetates, carbamates, carbonates and phosphates. For acyclic electrophiles, diastereoconvergent C–O functionalizations were observed.

Supporting Information

 
  • References

    • 1a Schmidt AW. Reddy KR. Knölker H.-J. Chem. Rev. 2012; 112: 3193
    • 1b Kochanowska-Karamyan AJ. Hamann MT. Chem. Rev. 2010; 110: 4489
    • 1c Fan H. Peng J. Hamann MT. Hu J.-F. Chem. Rev. 2008; 108: 264
    • 1d Humphrey GR. Kuethe JT. Chem. Rev. 2006; 106: 2875
    • 1e Ackermann L. Synlett 2007; 507

      Selected reviews:
    • 2a Grimsdale AC. Leok Chan K. Martin RE. Jokisz PG. Holmes AB. Chem. Rev. 2009; 109: 897
    • 2b Murphy AR. Fréchet JM. J. Chem. Rev. 2007; 107: 1066
    • 3a Song G. Li X. Acc. Chem. Res. 2015; 48: 1007
    • 3b Shin K. Kim H. Chang S. Acc. Chem. Res. 2015; 48: 1040
    • 3c Segawa Y. Maekawa T. Itami K. Angew. Chem. Int. Ed. 2015; 54: 66
    • 3d Kuhl N. Schröder N. Glorius F. Adv. Synth. Catal. 2014; 356: 1443
    • 3e Wencel-Delord J. Glorius F. Nat. Chem. 2013; 5: 369
    • 3f Satoh T. Miura M. Chem. Eur. J. 2010; 16: 11212
    • 3g Giri R. Shi B.-F. Engle KM. Maugel N. Yu J.-Q. Chem. Soc. Rev. 2009; 38: 3242
    • 3h Chen X. Engle KM. Wang D.-H. Yu J.-Q. Angew. Chem. Int. Ed. 2009; 48: 5094
    • 3i Ackermann L. Vicente R. Kapdi AR. Angew. Chem. 2009; 121: 9976
  • 4 Chirik P. Morris R. Acc. Chem. Res. 2015; 48: 2495

    • For representative reviews, see:
    • 5a Misal CL. C. Naoto C. Chem. Lett. 2015; 44: 410
    • 5b McCann SD. Stahl SS. Acc. Chem. Res. 2015; 48: 1756
    • 5c Koji H. Masahiro M. Chem. Lett. 2015; 44: 868
    • 5d Daugulis O. Roane J. Tran LD. Acc. Chem. Res. 2015; 48: 1053
    • 8a Moselage M. Li J. Ackermann L. ACS Catal. 2016; 6: 498
    • 8b Yoshikai N. ChemCatChem 2015; 7: 732
    • 8c Gao K. Yoshikai N. Acc. Chem. Res. 2014; 47: 1208
    • 8d Ackermann L. J. Org. Chem. 2014; 79: 8948
    • 10a Mei R. Ackermann L. Adv. Synth. Catal. 2016; 358: 2443
    • 10b Li J. Ackermann L. Chem. Eur. J. 2015; 21: 5718
    • 10c Punji B. Song W. Shevchenko GA. Ackermann L. Chem. Eur. J. 2013; 19: 10605
    • 10d Song W. Ackermann L. Angew. Chem. Int. Ed. 2012; 51: 8251

      For selected examples, see:
    • 11a Cong X. Zhai S. Zeng X. Org. Chem. Front. 2016; 3: 673
    • 11b Chen Q. Ilies L. Yoshikai N. Nakamura E. Org. Lett. 2011; 13: 3232
    • 11c Chen Q. Ilies L. Nakamura E. J. Am. Chem. Soc. 2011; 133: 428
    • 11d Halbritter G. Knoch F. Wolski A. Kisch H. Angew. Chem., Int. Ed. Engl. 1994; 33: 1603

      For reviews, see:
    • 12a Flanigan DM. Romanov-Michailidis F. White NA. Rovis T. Chem. Rev. 2015; 115: 9307
    • 12b Enders D. Niemeier O. Henseler A. Chem. Rev. 2007; 107: 5606
    • 12c Enders D. Balensiefer T. Acc. Chem. Res. 2004; 37: 534
    • 12d Enders D. Breuer K. Teles JH. Ebel K. J. Prakt. Chem. 1997; 339: 397

      For representative examples, see:
    • 13a Gawin R. Pieczykolan M. Malińska M. Woźniak K. Grela K. Synlett 2013; 24: 1250
    • 13b Zhao L. Ma Y. Duan W. He F. Chen J. Song C. Org. Lett. 2012; 14: 5780
    • 13c Strand RB. Helgerud T. Solvang T. Dolva A. Sperger CA. Fiksdahl A. Tetrahedron: Asymmetry 2012; 23: 1350
    • 13d Loh CC. J. Enders D. Chem. Eur. J. 2012; 18: 10212
    • 13e Bouffard J. Keitz BK. Tonner R. Guisado-Barrios G. Frenking G. Grubbs RH. Bertrand G. Organometallics 2011; 30: 2617
    • 13f Trnka TM. Morgan JP. Sanford MS. Wilhelm TE. Scholl M. Choi T.-L. Ding S. Day MW. Grubbs RH. J. Am. Chem. Soc. 2003; 125: 2546
    • 13g Enders D. Gielen H. J. Organomet. Chem. 2001; 617–618: 70
    • 13h Enders D. Gielen H. Breuer K. Tetrahedron: Asymmetry 1997; 8: 3571

      For reviews on C–O activation, see:
    • 14a Cornella J. Zarate C. Martin R. Chem. Soc. Rev. 2014; 43: 8081
    • 14b Kozhushkov SI. Potukuchi HK. Ackermann L. Cat. Sci. Tech. 2013; 3: 562
    • 14c Rosen BM. Quasdorf KW. Wilson DA. Zhang N. Resmerita A.-M. Garg NK. Percec V. Chem. Rev. 2011; 111: 1346
    • 14d Yu D.-G. Li B.-J. Shi Z.-J. Acc. Chem. Res. 2010; 43: 1486
  • 15 Moselage M. Sauermann N. Richter SC. Ackermann L. Angew. Chem. Int. Ed. 2015; 54: 6352
  • 16 Yatham VR. Harnying W. Kootz D. Neudörfl J.-M. Schlörer NE. Berkessel A. J. Am. Chem. Soc. 2016; 138: 2670
  • 17 Under otherwise identical reaction conditions, N-methyl- and N-phenylindole did not lead to any C–H activation
  • 18 Gensch T. Hopkinson MN. Glorius F. Wencel-Delord J. Chem. Soc. Rev. 2016; 45: 2900
  • 19 Wagner JP. Schreiner PR. Angew. Chem. Int. Ed. 2015; 54: 12274
  • 20 Enders D. Breuer K. Kallfass U. Balensiefer T. Synthesis 2003; 1292
  • 21 Ackermann L. Lygin AV. Org. Lett. 2011; 13: 3332
  • 22 Onishi Y. Yoneda Y. Nishimoto Y. Yasuda M. Baba A. Org. Lett. 2012; 14: 5788
  • 23 Qin X. Liu H. Qin D. Wu Q. You J. Zhao D. Guo Q. Huang X. Lan J. Chem. Sci. 2013; 4: 1964
  • 24 Ding Y. Wang W. Liu Z. Phosphorus, Sulfur Silicon Relat. Elem. 1996; 118: 113
  • 25 Silvestri MG. Hanson MP. Pavlovich JG. Studen LF. DeClue MS. DeGraffenreid MR. Amos CD. J. Org. Chem. 1999; 64: 6597
  • 26 Boultadakis-Arapinis M. Hopkinson MN. Glorius F. Org. Lett. 2014; 16: 1630
  • 27 Narlawar R. Werry EL. Scarf AM. Hanani R. Chua SW. King VA. Barron ML. Martins RN. Ittner LM. Rendina LM. Kassiou M. J. Med. Chem. 2015; 58: 8743