Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2019; 51(17): 3269-3276
DOI: 10.1055/s-0037-1610712
DOI: 10.1055/s-0037-1610712
paper
Palladium-Catalyzed Asymmetric Heck–Matsuda Reaction of 1,4-Dihydroquinolines with Aryl Diazonium Salts
We acknowledge financial support from the National Natural Science Foundation of China (NSFC) (grants 21772215, 21532010 and 21472214), the Strategic Priority Research Program of the Chinese Academy of Sciences (grant XDB20030100), the NSFC and the Research Grants Council of Hong Kong Joint Research Scheme (grant 21361162001), the Chinese Academy of Sciences, the Technology Commission of Shanghai Municipality and the Croucher Foundation of Hong Kong.Further Information
Publication History
Received: 18 March 2019
Accepted after revision: 15 April 2019
Publication Date:
14 May 2019 (online)
Abstract
A palladium-catalyzed asymmetric Heck–Matsuda reaction of N-Boc-1,4-dihydroquinolines and aryl diazonium tetrafluoroborates is realized in moderate to high yields and with high enantioselectivities. The method provides an efficient route to access optically active 2-arylhydroquinolines.
Key words
palladium - Heck–Matsuda reaction - asymmetric catalysis - 1,4-dihydroquinolines - aryl diazonium tetrafluoroborates - 2-arylhydroquinolinesSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1610712.
- Supporting Information
-
References
- 1a Kikukawa K, Matsuda T. Chem. Lett. 1977; 6: 159
- 1b Oestreich M. Angew. Chem. Int. Ed. 2014; 53: 2282
- 1c Li Z, Ip FC. F, Ip NY, Tong R. Chem. Eur. J. 2015; 21: 11152
- 1d Oliveira CC, Pfaltz A, Correia CR. D. Angew. Chem. Int. Ed. 2015; 54: 14036
- 1e Khan IU, Kattela S, Hassan A, Correia CR. D. Org. Biomol. Chem. 2016; 14: 9476
- 1f Li Z, Tong R. J. Org. Chem. 2017; 82: 1127
- 1g de Oliveira JM, Angnes RA, Khan IU, Polo EC, Heerdt G, Servilha BM, Menezes da Silva VH, Braga AC. A, Correia CR. D. Chem. Eur. J. 2018; 24: 11738
- 2a Yasui S, Fujii M, Kawano C, Nishimura Y, Ohno A. Tetrahedron Lett. 1991; 32: 5601
- 2b Yasui S, Fujii M, Kawano C, Nishimura Y, Shioji K, Ohno A. J. Chem. Soc., Perkin Trans. 2 1994; 177
- 3a Correia CR. D, Oliveira CC, Salles AG. Jr, Santos EA. F. Tetrahedron Lett. 2012; 53: 3325
- 3b Oliveira CC, Angnes RA, Correia CR. D. J. Org. Chem. 2013; 78: 4373
- 3c de Azambuja F, Carmona RC, Chorro TH. D, Heerdt G, Correia CR. D. Chem. Eur. J. 2016; 22: 11205
- 3d de Oliveira Silva J, Angnes RA, Menezes da Silva VH, Servilha BM, Adeel M, Braga AA. C, Aponick A, Correia CR. D. J. Org. Chem. 2016; 81: 2010
- 3e Kattela S, Heerdt G, Correia CR. D. Adv. Synth. Catal. 2017; 359: 260
- 3f Frota C, Polo EC, Esteves H, Correia CR. D. J. Org. Chem. 2018; 83: 2198
- 3g Silva AR, Polo EC, Martins NC, Correia CR. D. Adv. Synth. Catal. 2018; 360: 346
- 3h Carmona RC, Köster OD, Correia CR. D. Angew. Chem. Int. Ed. 2018; 57: 12067
- 4a Werner EW, Mei T.-S, Burckle AJ, Sigman MS. Science 2012; 338: 1455
- 4b Mei T.-S, Patel HH, Sigman MS. Nature 2014; 508: 340
- 4c Dang Y, Qu S, Wang Z.-X, Wang X. J. Am. Chem. Soc. 2014; 136: 986
- 4d Xu L, Hilton MJ, Zhang X, Norrby P.-O, Wu Y.-D, Sigman MS, Wiest O. J. Am. Chem. Soc. 2014; 136: 1960
- 5a Avila CM, Patel JS, Reddi Y, Saito M, Nelson HM, Shunatona HP, Sigman MS, Sunoj RB, Toste FD. Angew. Chem. Int. Ed. 2017; 56: 5806
- 5b Reddi Y, Tsai C.-C, Avila CM, Toste FD, Sunoj RB. J. Am. Chem. Soc. 2019; 141: 998
- 6a Tu T, Deng WP, Hou XL, Dai LX, Dong XC. Chem. Eur. J. 2003; 9: 3073
- 6b Hou XL, Dong DX, Yuan K. Tetrahedron: Asymmetry 2004; 15: 2189
- 6c Wu W.-Q, Peng Q, Dong D.-X, Hou X.-L, Wu Y.-D. J. Am. Chem. Soc. 2008; 130: 9717
- 6d Ding C.-H, Hou X.-L. Bull. Chem. Soc. Jpn. 2010; 83: 992
- 6e Li H, Ding C.-H, Xu B, Hou X.-L. Acta Chim. Sinica 2014; 72: 765
- 6f Li H, Wan S.-L, Ding C.-H, Xu B, Hou X.-L. RSC Adv. 2015; 5: 75411
- 6g Li H, Gao A, Liu X.-Y, Ding C.-H, Xu B, Hou X.-L. Synthesis 2017; 49: 159
- 7 Jiang Z.-Z, Gao A, Li H, Chen D, Ding C.-H, Xu B, Hou X.-L. Chem. Asian J. 2017; 12: 3119
- 8a Rokotoson JH, Fabre N, Jacquemond-Collet I, Hannedouche S, Fabre N, Fouraste I, Moulis C. Planta Med. 1998; 64: 762
- 8b Sridharan V, Suryavanshi PA, Menendez JC. Chem. Rev. 2011; 111: 7157
- 8c Chung PY, Bian ZX, Pun HY, Chan D, Chan AS. C, Chui CH, Tang JC. O, Lam KH. Future Med. Chem. 2015; 7: 947
- 9a Wang W.-B, Lu S.-M, Yang P.-Y, Han X.-W, Zhou Y.-G. J. Am. Chem. Soc. 2003; 125: 10536
- 9b Rueping M, Antonchick AR, Theissmann T. Angew. Chem. Int. Ed. 2006; 45: 3683
- 9c Akiyama T, Morita H, Fuchibe K. J. Am. Chem. Soc. 2006; 128: 13070
- 9d Liu H, Dagousset G, Masson G, Retailleau P, Zhu J. J. Am. Chem. Soc. 2009; 131: 4598
- 9e Han Z.-Y, Xiao H, Chen X.-H, Gong L.-Z. J. Am. Chem. Soc. 2009; 131: 9182
- 9f Wang T, Zhuo L.-G, Li Z, Chen F, Ding Z, He Y, Fan Q.-H, Xiang J, Yu Z.-X, Chan AS. C. J. Am. Chem. Soc. 2011; 133: 9878
- 9g Sylvester KT, Wu K, Doyle AG. J. Am. Chem. Soc. 2012; 134: 16967
- 9h Pappoppula M, Cardoso FS. P, Garrett BO, Aponick A. Angew. Chem. Int. Ed. 2015; 54: 15202
- 9i Wang Y, Liu Y, Zhang D, Wei H, Shi M, Wang F. Angew. Chem. Int. Ed. 2016; 55: 3776
- 9j Lim CS, Quach TT, Zhao Y. Angew. Chem. Int. Ed. 2017; 56: 7176
- 10a Jacquemond-Collet I, Hannedouche S, Fabre N, Fouraste I, Moulis C. Phytochemistry 1999; 51: 1167
- 10b Jacquemond-Collet I, Bessiere JM, Hannedouche S, Bertrand C, Fouraste I, Moulis C. Phytochem. Anal. 2001; 12: 312
- 10c Maillard MC, Perlman ME, Amitay O, Baxter D, Berlove D, Connaughton S, Fischer JB, Guo JQ, Hu LY, McBurney RN, Nagy PI, Subbarao K, Yost EA. J. Med. Chem. 1998; 41: 3048
- 10d Rano TA, Kuo G.-H. Org. Lett. 2009; 11: 2812
- 10e Wallace OB, Lauwers KS, Jones SA, Dodge JA. Bioorg. Med. Chem. Lett. 2003; 13: 1907
- 11 Liu X.-Y, Xiao Y.-P, Siu F.-M, Ni L.-C, Chen Y, Wang L, Che C.-M. Org. Biomol. Chem. 2012; 10: 7208
For selected examples of synthetic methods to access optically active 2-substituted hydroquinolines, see: