Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2019; 51(04): 907-920
DOI: 10.1055/s-0037-1611229
DOI: 10.1055/s-0037-1611229
paper
Organocatalytic Allylic Amination of Morita–Baylis–Hillman Carbonates
Jan Veselý gratefully acknowledges the Czech Science Foundation (No 16-23597S) for financial support. Bedřich Formánek thanks the Charles University Grant Agency (grant number 392315) for financial support.Further Information
Publication History
Received: 28:08:2018
Accepted after revision: 01:10:2018
Publication Date:
25 October 2018 (online)
Dedicated to Prof. Bäckvall to his 70th anniversary.
Abstract
An organocatalytic asymmetric allylic amination of Morita–Baylis–Hillman carbonates with aromatic amines in the presence of β-isocupreidine is described. Chiral allylic amines were obtained in almost quantitative yields (90–96%) with moderate enantioselectivity. Recrystallization afforded products in good yields (45–73%) and high optical purity (82–99% ee). This method provides a facile and efficient route to obtain optically active β-lactams, including the building block of the cholesterol-lowering drug Ezetimibe.
Key words
alkaloids - allylic amination - asymmetric synthesis - Ezetimibe - Morita–Baylis–Hillman carbonates - organocatalysisSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1611229.
- Supporting Information
-
References
- 1a Basavaiah D, Rao AJ, Satyanarayana T. Chem. Rev. 2003; 103: 811
- 1b Galeazzi R, Martelli G, Mobbili G, Orena M, Rinaldi S. Org. Lett. 2004; 6: 2571
- 1c Sorbetti JM, Clary KN, Rankic DA, Wulff JE, Parvez M, Back TG. J. Org. Chem. 2007; 72: 3326
- 1d Nemoto T, Fukuyama T, Yamamoto E, Tamura S, Fukuda T, Matsumoto T, Akimoto Y, Hamada Y. Org. Lett. 2007; 9: 927
- 1e Declerck V, Toupet L, Martinez J, Lamaty F. J. Org. Chem. 2009; 74: 2004
- 2a Brown EG. Ring Nitrogen and Key Biomolecules . Springer; Boston, MA: 1998
- 2b Hili R, Yudin AK. Nat. Chem. Biol. 2006; 2: 284
- 2c Henkel T, Brunne RM, Muller H, Reichel F. Angew. Chem. Int. Ed. 1999; 38: 643
- 3a Trost BM, Strege PE. J. Am. Chem. Soc. 1977; 99: 1649
- 3b Weaver JD, Recio A, Grenning AJ, Tunge JA. Chem. Rev. 2011; 111: 1846
- 3c Corma A, Leyva-Pérez A, Sabater MJ. Chem. Rev. 2011; 111: 1657
- 3d Diéguez M, Pámies O. Acc. Chem. Res. 2010; 43: 312
- 3e Hartwig JF, Stanley LM. Acc. Chem. Res. 2010; 43: 1461
- 3f Lu Z, Ma S. Angew. Chem. Int. Ed. 2008; 47: 258
- 3g Alexakis A, Bäckvall JE, Krause N, Pàmies O, Diéguez M. Chem. Rev. 2008; 108: 2796
- 3h Trost BM, Machacek MR, Aponick A. Acc. Chem. Res. 2006; 39: 747
- 3i Belda O, Moberg C. Acc. Chem. Res. 2004; 37: 159
- 3j Trost BM, Crawley ML. Chem. Rev. 2003; 103,: 2921
- 4a Grange RL, Clizbe EA, Evans PA. Synthesis 2016; 48: 2911
- 4b Johannsen M, Jørgensen KA. Chem. Rev. 1998; 98: 1689
- 5a Rajesh S, Banerji B, Iqbal J. J. Org. Chem. 2002; 67: 7852
- 5b Nemoto T, Fukuyama T, Yamamoto E, Tamura S, Fukuda T, Matsumoto T, Akimoto Y, Hamada Y. Org. Lett. 2007; 9: 927
- 5c Wang Y, Liu L, Wang D, Chen Y.-J. Org. Biomol. Chem. 2012; 10: 6908
- 5d Wang X, Meng F, Wang Y, Han Z, Chen Y.-J, Liu L, Wang Z, Ding K. Angew. Chem. Int. Ed. 2012; 51: 9276
- 5e Wang X, Guo P, Han Z, Wang Z, Wang Z, Ding K. J. Am. Chem. Soc. 2014; 136: 405
- 5f Wang X, Wang X, Han Z, Wang Z, Ding K. Org. Chem. Front. 2017; 4: 271
- 6a Kim JN, Lee HJ, Gong JH. Tetrahedron Lett. 2002; 43: 9141
- 6b Du Y.-H, Han X.-L, Lu X.-Y. Tetrahedron Lett. 2004; 45: 4967
- 6c Zhang S.-J, Cui H.-L, Jiang K, Li R, Ding Z.-Y, Chen Y.-C. Eur. J. Org. Chem. 2009; 5804
- 6d Cui H.-L, Feng X, Peng J, Lei J, Jiang K, Chen Y.-C. Angew. Chem. Int. Ed. 2009; 48: 5737
- 6e Huang J.-R, Cui H.-L, Lei J, Sun X.-H, Chen Y.-C. Chem. Commun. 2011; 4784
- 6f Lin A.-J, Mao H.-B, Zhu X, Ge H.-M, Tan R.-X, Zhu C.-J, Cheng Y.-X. Chem. Eur. J. 2011; 17: 13676
- 6g Pei C.-K, Zhang X.-C, Shi M. Eur. J. Org. Chem. 2011; 4479
- 6h Sun W.-S, Ma X.-Z, Hong L, Wang R. J. Org. Chem. 2011; 76: 7826
- 6i Huang L, Wei Y, Shi M. Org. Biomol. Chem. 2012; 10: 1396
- 6j Zhao M.-X, Chen M.-X, Tang W.-H, Wei D.-K, Dai T.-L, Shi M. Eur. J. Org. Chem. 2012; 3598
- 6k Zhang H, Zhang S.-J, Zhou Q.-Q, Dong L, Chen Y.-C. Beilstein J. Org. Chem. 2012; 8: 1241
- 6l Ma G, Sibi MP. Org. Chem. Front. 2014; 1: 1152
- 6m Yao L, Wang C.-J. Adv. Synth. Catal. 2015; 357: 384
- 6n Zhao X, Kang T, Shen J, Sha F, Wu X. Chin. J. Chem. 2015; 33: 1333
- 6o Baioui N, Elleuch H, Rezgui F. Synth. Commun. 2016; 46: 1796
- 6p Kamlar M, Císařová I, Hybelbauerová S, Veselý J. Eur. J. Org. Chem. 2017; 1926
- 7a Cho C.-W, Kong J.-R, Krische MJ. Org. Lett. 2004; 6: 1337
- 7b Zhang T.-Z, Dai L.-X, Hou X.-L. Tetrahedron: Asymmetry 2007; 18: 1990
- 7c Ma G.-N, Cao S.-H, Shi M. Tetrahedron: Asymmetry 2009; 20: 1086
- 7d Deng H.-P, Wei Y, Shi M. Eur. J. Org. Chem. 2011; 1956
- 7e Zhao X, Kang T, Shen J, Sha F, Wu X. Chin. J. Chem. 2015; 33: 1333
- 7f Zhu L.-L, Hu H.-W, Qi L, Zheng Y, Zhong W.-H. Eur. J. Org. Chem. 2016; 2139
- 8a Wabnitz TC, Spencer JB. Org. Lett. 2003; 5: 2141
- 8b Yang L, Xu L.-W, Xia C.-G. Tetrahedron Lett. 2008; 48: 1599
- 8c Sanchez-Rosello M, Acena JL, Simon-Fuentes A, del Pozo C. Chem. Soc. Rev. 2014; 43: 7430 ; and references therein
- 9a Goerdeler H, Holst A. Angew. Chem. 1959; 71: 775
- 9b Zervas L, Borovas D, Gazis E. J. Am. Chem. Soc. 1963; 85: 3660
- 9c Isidro-Llobet A, Álvarez M, Albericio F. Chem. Rev. 2009; 109: 2455 ; and references therein
- 9d Sekine M. J. Org. Chem. 1989; 54: 2321
- 10a Wanner MJ, Hauwert P, Schoemaker HE, de Gelder R, van Maarseveen JH, Hiemstra H. Eur. J. Org. Chem. 2008; 180
- 10b Mons E, Wanner MJ, Ingemann S, van Maarseveen JH, Hiemstra H. J. Org. Chem. 2014; 79: 7380
- 11 Chen G.-Y, Zhong F, Lu Y. Org. Lett. 2011; 13: 6070
- 12 Pitts CR, Lectka T. Chem. Rev. 2014; 114: 7930 ; and references therein
- 13a Chen H.-Y, Patkar LN, Ueng S.-H, Lin C.-C, Lee AS.-Y. Synlett 2005; 2035
- 13b Benfatti F, Cardillo G, Gentilucci L, Mosconi E, Tolomelli A. Org. Lett. 2008; 10: 2425
- 13c Bakthadoss M, Srinivasan J, Selvakumar R. Aust. J. Chem. 2014; 67: 295
- 14 Kim S, Lee TA. Bull. Korean Chem. Soc. 1988; 9: 189
- 15 Huang H, Iwasawa N, Mukaiyama T. Chem. Lett. 1984; 8: 1465
- 16 Wang WB, Roskamp EJ. J. Am. Chem. Soc. 1993; 115: 9417
- 17 Humpl M, Tauchman J, Topolovčan N, Kretschmer J, Hessler F, Císařová I, Kotora M, Veselý J. J. Org. Chem. 2016; 81: 7692
- 18a Rosenblum SB, Huynh T, Afonso A, Davis HR. Jr, Yumibe N, Clader JW, Burnett DA. J. Med. Chem. 1998; 41: 973
- 18b Clader JW. J. Med. Chem. 2004; 47: 1
- 19 X-ray crystallographic data have been deposited with the Cambridge Crystallographic Data Centre (CCDC) under deposition number 1812260 for 14c, and can be obtained free of charge from the Centre via its website (www.ccdc.cam.ac.uk/getstructures).
- 20 Wipf P, Maciejewski PJ. Org. Lett. 2008; 10: 4383
- 21 Millet A, Baudoin O. Org. Lett. 2014; 16: 3998
- 22 Jacquemard U, Bénéteau V, Lefoix M, Routier S, Mérour Y, Couder G. Tetrahedron 2004; 60: 10039
- 23 Sultane PR, Mete TB, Bhat RG. Org. Biomol. Chem. 2014; 12: 261
- 24 Al-Sha'er MA, Taha MO. Med. Chem. Res. 2012; 21: 487
- 25 Moore ML, Johnson TB. J. Am. Chem. Soc. 1935; 57: 1517
- 26 Vorlander D, Ernst M. Ber. Dtsch. Chem. Ges. 1919; 52: 413
- 27 van Steenis DJ. V. C, Marcelli T, Lutz M, Spek AL, van Maarseveen JH, Hiemstra H. Adv. Synth. Catal. 2007; 349: 281
- 28 Hoen R, Tiemersma-Wegman T, Procuranti B, Lefort L, de Vries JG, Minnaard AJ, Feringa BL. Org. Biomol. Chem. 2007; 5: 267
- 29 Ramachandran PV, Nicponski DR. Chem. Commun. 2014; 15216
- 30 Zhang T.-Z. Tetrahedron: Asymmetry 2007; 18: 1990
- 31 Liu J, Han Z, Wang X, Wang Z, Ding K. J. Am. Chem. Soc. 2015; 137: 15346
- 32 Reddy RS, Lagishetti Ch, Kiran Ch, You H, He Y. Org. Lett. 2016; 18: 3818
- 33 Yang K.-S, Lee W.-D, Pan J.-F, Chen K. J. Org. Chem. 2003; 68: 915
- 34 18a (R1 = R2 = Ph) was identified by 1H NMR spectroscopy and mass spectrometry.
- 35 Incomplete conversion of starting material was observed probably due to sensitivity of Sn[N(TMS)2]2 reagent to traces of moisture.
For the enantioselective allylic substitution, see:
For reviews, see:
For selected reviews, see:
For enantioselective allylic aminations catalyzed by chiral amines, see:
For enantioselective allylic amination catalyzed by chiral phosphines, see:
For selected examples, see: