Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2019; 51(17): 3259-3268
DOI: 10.1055/s-0037-1611564
DOI: 10.1055/s-0037-1611564
paper
Synthesis of Phenyl-2,2′-bichalcophenes and Their Aza-Analogues by Catalytic Oxidative Deacetylation
This work was supported by 2018 Research Fund of Myongji University.Further Information
Publication History
Received: 13 March 2019
Accepted after revision: 07 May 2019
Publication Date:
28 May 2019 (online)
† These authors contributed equally to this work.
Abstract
Efficient synthetic method for medicinally and opto-electronically important bichalcophenes is reported, which highlights Mn(OAc)3/CoCl2-catalyzed oxidative deacetylation of 1,5-dicarbonyl compounds that were easily prepared by conjugate addition of ethyl acetoacetate to α,β-unsaturated carbonyl compounds containing a chalcophene unit. Paal–Knorr reaction of the resulting 1,4-dicarbonyl compounds produced 4-phenyl-2,2′-bichalcophenes and their aza-analogues.
Key words
bichalcophene - catalytic oxidation - deacetylation - 1,4-dicarbonyl compound - Paal–Knorr reactionSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1611564.
- Supporting Information
-
References
- 1a Youssef MM, Al-Omair MA, Ismail MA. Med. Chem. Res. 2011; 21: 4074
- 1b Hussin WA, Ismail MA, El-Sayed WM. Drug Des. Devel. Ther. 2013; 7: 185
- 1c Ismail MA, Boykin DW, Stephens CE. Tetrahedron Lett. 2006; 47: 795
- 2a Ong BS, Wu Y, Liu P, Gardner S. J. Am. Chem. Soc. 2004; 126: 3378
- 2b Zhang T.-G, Zhao Y, Asselberghs I, Persoons A, Clays K, Therien MJ. J. Am. Chem. Soc. 2005; 127: 9710
- 2c Herbivo C, Comel A, Kirsch G, Manuela M, Raposo M. Tetrahedron 2009; 65: 2079
- 3a Gidron O, Varsano N, Shimon LJ. W, Leitus G, Bendikov M. Chem. Commun. 2013; 49: 6256
- 3b Song C, Sun D, Peng X, Bai J, Zhang R, Hou S, Wang J, Xu Z. Chem. Commun. 2013; 49: 9167
- 4 Francesconi I, Wilson WD, Tanious FA, Hall JE, Bender BC, Tidwell RR, McCurdy D, Boykin DW. J. Med. Chem. 1999; 42: 2260
- 5a Grigg R, Knight JA, Sargent MV. J. Chem. Soc. C 1966; 976
- 5b Atkinson RE, Curtis RF, Phillips GT. J. Chem. Soc. C 1967; 2011
- 6a Stanforth SP. Tetrahedron 1998; 54: 263
- 6b Yokooji A, Satoh T, Miura M, Nomura M. Tetrahedron 2004; 60: 6757
- 6c Farahat AA, Kumar A, Barghash AE.-D. M, Goda FE, Eisa HM, Boykin DW. J. Heterocycl. Chem. 2010; 47: 167
- 6d Raposo MM. M, Fonseca AM. C, Kirsch G. Tetrahedron 2004; 60: 4071
- 7 Grotkopp O, Müller TJ. J. Chem. Heterocycl. Compd. 2017; 53: 66
- 8a Jing X, Pan X, Li Z, Bi X, Yan C, Zhu H. Synth. Commun. 2009; 39: 3833
- 8b Stepherson JR, Fronczek FR, Kartika R. Chem. Commun. 2016; 52: 2300
- 8c Fuchs PJ. W, Zeitler K. J. Org. Chem. 2017; 82: 7796
- 8d Yang J, Mei F, Fu S, Gu Y. Green Chem. 2018; 20: 1367
- 9 Fajarí L, Brillas E, Alemán C, Juliá L. J. Org. Chem. 1998; 63: 5324
- 10 Ismail MA. J. Chem. Res. 2006; 733
- 11 Ju Y, Miao D, Yu R, Koo S. Org. Biomol. Chem. 2015; 13: 2588
- 12 Parveen H, Iqbal PF, Azam A. Synth. Commun. 2008; 38: 3973
- 13 Bartoli G, Bosco M, Bellucci MC, Marcantoni E, Sambri L, Torregiani E. Eur. J. Org. Chem. 1999; 617
- 14 Ju Y, Miao D, Seo JG, Koo S. Adv. Synth. Catal. 2014; 356: 3059
- 15a Rtishchev NI, Nosova GI, Solovskaya NA, Luk’yashina VA, Galaktionova EF, Kudryavtsev VV. Russ. J. Gen. Chem. 2001; 71: 1272
- 15b Sun Q, Yao CJ, König B. Photochem. Photobiol. Sci. 2015; 14: 948
- 16 Sharma P, Kumar S, Ali F, Anthal S, Gupta VK, Khan IA, Singh S, Sangwan PL, Suri KA, Gupta BD, Gupta DK, Dutt P, Vishwakarma RA, Satti NK. Med. Chem. Res. 2013; 22: 3969
- 17 Rateb NM, Zohdi HF. Synth. Commun. 2009; 39: 2789