Synthesis 2019; 51(06): 1293-1310
DOI: 10.1055/s-0037-1612014
review
© Georg Thieme Verlag Stuttgart · New York

Base-Metal-Catalyzed Olefin Isomerization Reactions

Xufang Liu
a   Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. of China   Email: qiang_liu@mail.tsinghua.edu.cn
,
Bin Li
b   School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong Province 529090, P. R. of China
,
Qiang Liu*
a   Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. of China   Email: qiang_liu@mail.tsinghua.edu.cn
› Author Affiliations
This project was supported by the National Natural Science Foundation of China (21702118, 21822106), the Foundation of the Department of Education of Guangdong Province (2017KZDXM085), and the 111 project.
Further Information

Publication History

Received: 06 October 2018

Accepted after revision: 21 November 2018

Publication Date:
19 February 2019 (online)


Abstract

The catalytic olefin isomerization reaction is a highly efficient and atom-economic transformation in organic synthesis that has attracted tremendous attention both in academia and industry. Recently, the development of Earth-abundant metal catalysts has received growing interest owing to their wide availability, sustainability, and ­environmentally benign nature, as well as the unique properties of non-precious metals. This review provides an overview of a broad range of base-metal-catalyzed olefin isomerization reactions categorized ­according to their different reaction mechanisms.

1 Introduction

2 Base-Metal-Catalyzed Olefin Isomerization Reactions

3 Base-Metal-Catalyzed Cycloisomerization Reactions

4 Conclusion

 
  • References

    • 1a Larionov E, Li H, Mazet C. Chem. Commun. 2014; 50: 9816
    • 1b Vasseur A, Bruffaerts J, Marek I. Nat. Chem. 2016; 8: 209
    • 1c Hilt G. ChemCatChem 2014; 6: 2484
    • 2a Hanessian S, Giroux S, Larsson A. Org. Lett. 2006; 8: 5481
    • 2b Grotjahn DB, Larsen CR, Gustafson JL, Nair R, Sharma A. J. Am. Chem. Soc. 2007; 129: 9592
    • 2c Erdogan G, Grotjahn DB. J. Am. Chem. Soc. 2009; 131: 10354
    • 2d Larsen CR, Grotjahn DB. J. Am. Chem. Soc. 2012; 134: 10357
    • 2e Clark JR, Griffiths JR, Diver ST. J. Am. Chem. Soc. 2013; 135: 3327
    • 2f Erdogan G, Grotjahn DB. Org. Lett. 2014; 16: 2818
    • 2g Larsen CR, Erdogan G, Grotjahn DB. J. Am. Chem. Soc. 2014; 136: 1226
    • 2h Perdriau S, Chang M.-C, Otten E, Heeres HJ, de Vries JG. Chem. Eur. J. 2014; 20: 15434
    • 2i Alcaide B, Almendros P, Alonso JM. Chem. Eur. J. 2006; 12: 2874
    • 2j Krompiec S, Pigulla M, Kuźnik N, Krompiec M, Marciniec B, Chadyniak D, Kasperczyk J. J. Mol. Catal. A: Chem. 2005; 225: 91
    • 2k Krompiec S, Kuźnik N, Penczek R, Rzepa J, Mrowiec-Białoń J. J. Mol. Catal. A: Chem. 2004; 219: 29
  • 3 Zhuo L.-G, Yao Z.-K, Yu Z.-X. Org. Lett. 2013; 15: 4634
    • 4a Lim HJ, Smith CR, RajanBabu TV. J. Org. Chem. 2009; 74: 4565
    • 4b Gauthier D, Lindhardt AT, Olsen EP. K, Overgaard J, Skrydstrup T. J. Am. Chem. Soc. 2010; 132: 7998
    • 4c Mamone P, Grünberg MF, Fromm A, Khan BA, Gooßen LJ. Org. Lett. 2012; 14: 3716
    • 4d Larionov E, Lin L, Guénée L, Mazet C. J. Am. Chem. Soc. 2014; 136: 16882
    • 4e Lin L, Romano C, Mazet C. J. Am. Chem. Soc. 2016; 138: 10344
    • 5a Li H, Mazet C. Org. Lett. 2013; 15: 6170
    • 5b Knapp SM. M, Shaner SE, Kim D, Shopov DY, Tendler JA, Pudalov DM, Chianese AR. Organometallics 2014; 33: 473
    • 5c Wang Y, Qin C, Jia X, Leng X, Huang Z. Angew. Chem. Int. Ed. 2017; 56: 1614
    • 5d Neugnot B, Cintrat J.-C, Rousseau B. Tetrahedron 2004; 60: 3575
  • 6 Scarso A, Colladon M, Sgarbossa P, Santo C, Michelin RA, Strukul G. Organometallics 2010; 29: 1487
  • 7 Becica J, Glaze OD, Wozniak DI, Dobereiner GE. Organometallics 2018; 37: 482
  • 8 Cramer R, Lindsey RV. J. Am. Chem. Soc. 1966; 88: 3534
  • 9 Jennerjahn R, Jackstell R, Piras I, Franke R, Jiao H, Bauer M, Beller M. ChemSusChem 2012; 5: 734
  • 10 Heck RF, Breslow DS. J. Am. Chem. Soc. 1961; 83: 4023
  • 11 Taylor P, Orchin M. J. Am. Chem. Soc. 1971; 93: 6504
  • 12 Hendrix WT, Von Rosenberg JL. J. Am. Chem. Soc. 1976; 98: 4850
  • 13 Chen C, Dugan TR, Brennessel WW, Weix DJ, Holland PL. J. Am. Chem. Soc. 2014; 136: 945
  • 14 Schmidt A, Nödling AR, Hilt G. Angew. Chem. Int. Ed. 2015; 54: 801
  • 15 Liu X, Zhang W, Wang Y, Zhang Z.-X, Jiao L, Liu Q. J. Am. Chem. Soc. 2018; 140: 6873
  • 16 Zhang Z.-X, Chen S.-C, Jiao L. Angew. Chem. Int. Ed. 2016; 55: 8090
  • 17 Lochow CF, Miller RG. J. Org. Chem. 1976; 41: 3020
    • 18a Kanai H. J. Chem. Soc., Chem. Commun. 1972; 203
    • 18b Hiroyoshi K, Kenji K, Kei S, Nobuji K. Bull. Chem. Soc. Jpn. 1980; 53: 2711
  • 19 Wille A, Tomm S, Frauenrath H. Synthesis 1998; 305
  • 20 Zhang J, Gao H, Ke Z, Bao F, Zhu F, Wu Q. J. Mol. Catal. A: Chem. 2005; 231: 27
  • 21 Weber F, Schmidt A, Röse P, Fischer M, Burghaus O, Hilt G. Org. Lett. 2015; 17: 2952
  • 22 Hilt G, Weber F, Steinlandt P, Ballmann M. Synthesis 2016; 49: 440
    • 23a Frauenrath H, Reim S, Wiesner A. Tetrahedron: Asymmetry 1998; 9: 1103
    • 23b Frauenrath H, Brethauer D, Reim S, Maurer M, Raabe G. Angew. Chem. Int. Ed. 2001; 40: 177
    • 24a Manuel TA. J. Org. Chem. 1962; 27: 3941
    • 24b Casey CP, Cyr CR. J. Am. Chem. Soc. 1973; 95: 2248
    • 24c Schroeder MA, Wrighton MS. J. Am. Chem. Soc. 1976; 98: 551
    • 24d Long GT, Weitz E. J. Am. Chem. Soc. 2000; 122: 1431
    • 24e Branchadell V, Crévisy C, Grée R. Chem. Eur. J. 2003; 9: 2062
    • 24f Chong TS, Tan ST, Fan WY. Chem. Eur. J. 2006; 12: 5128
    • 24g Sawyer KR, Glascoe EA, Cahoon JF, Schlegel JP, Harris CB. Organometallics 2008; 27: 4370
    • 24h Bolm C, Legros J, Le Paih J, Zani L. Chem. Rev. 2004; 104: 6217
  • 25 Emerson GF, Pettit R. J. Am. Chem. Soc. 1962; 84: 4591
    • 26a Uma R, Crévisy C, Grée R. Chem. Rev. 2003; 103: 27
    • 26b van der Drift RC, Bouwman E, Drent E. J. Organomet. Chem. 2002; 650: 1
  • 27 Damico R, Logan T. J. Org. Chem. 1967; 32: 2356
  • 28 Cowherd FG, Von Rosenberg JL. J. Am. Chem. Soc. 1969; 91: 2157
  • 29 Cherkaoui H, Soufiaoui M, Grée R. Tetrahedron 2001; 57: 2379
    • 30a Hesse M, Sergeyev S. Synlett 2002; 1313
    • 30b Damico R. J. Org. Chem. 1968; 33: 1550
    • 30c Krompiec S, Krompiec M, Penczek R, Ignasiak H. Coord. Chem. Rev. 2008; 252: 1819
    • 30d Kuźnik N, Krompiec S. Coord. Chem. Rev. 2007; 251: 222
  • 31 Stille JK, Becker Y. J. Org. Chem. 1980; 45: 2139
  • 32 Murai T, Kasai Y, Ishihara H, Kato S. J. Org. Chem. 1992; 57: 5542
  • 33 Crivello JV, Kong S. J. Org. Chem. 1998; 63: 6745
  • 34 Shih K.-C, Angelici RJ. J. Org. Chem. 1996; 61: 7784
  • 35 Iranpoor N, Imanieh H, Iran S, Forbes EJ. Synth. Commun. 1989; 19: 2955
  • 36 Iranpoor N, Mottaghinejad E. J. Organomet. Chem. 1992; 423: 399
  • 37 Mayer M, Welther A, Jacobi von Wangelin A. ChemCatChem 2011; 3: 1567
  • 38 Cahard D, Bizet V, Dai X, Gaillard S, Renaud J.-L. J. Fluorine Chem. 2013; 155: 78
  • 39 Wang L, Liu C, Bai R, Pan Y, Lei A. Chem. Commun. 2013; 49: 7923
  • 40 Halli J, Kramer P, Bechthold M, Manolikakes G. Adv. Synth. Catal. 2015; 357: 3321
  • 41 Kobayashi T, Yorimitsu H, Oshima K. Chem. Asian J. 2009; 4: 1078
  • 42 Pünner F, Schmidt A, Hilt G. Angew. Chem. Int. Ed. 2012; 51: 1270
  • 43 Schmidt A, Hilt G. Chem. Asian J. 2014; 9: 2407
  • 44 Crossley SW. M, Barabé F, Shenvi RA. J. Am. Chem. Soc. 2014; 136: 16788
  • 45 Li G, Kuo JL, Han A, Abuyuan JM, Young LC, Norton JR, Palmer JH. J. Am. Chem. Soc. 2016; 138: 7698
  • 46 Goetz RW, Orchin M. J. Am. Chem. Soc. 1963; 85: 1549
  • 47 Xia T, Wei Z, Spiegelberg B, Jiao H, Hinze S, de Vries JG. Chem. Eur. J. 2018; 24: 4043
    • 48a Yamamoto Y. Chem. Rev. 2012; 112: 4736
    • 48b Watson ID. G, Toste FD. Chem. Sci. 2012; 3: 2899
    • 48c Marinetti A, Jullien H, Voituriez A. Chem. Soc. Rev. 2012; 41: 4884
    • 48d Michelet V, Toullec PY, Genêt J.-P. Angew. Chem. Int. Ed. 2008; 47: 4268
  • 49 Bogdanović B, Henc B, Karmann H.-G, Nüssel H.-G, Walter D, Wilke G. Ind. Eng. Chem. 1970; 62: 34
  • 50 Maly NA, Menapace H, Farona MF. J. Catal. 1973; 29: 182
  • 51 Behr A, Freudenberg U, Keim W. J. Mol. Catal. 1986; 35: 9
  • 52 Radetich B, RajanBabu TV. J. Am. Chem. Soc. 1998; 120: 8007
    • 53a Boing C, Francio G, Leitner W. Chem. Commun. 2005; 1456
    • 53b Böing C, Franciò G, Leitner W. Adv. Synth. Catal. 2005; 347: 1537
    • 53c Diez-Holz CJ, Böing C, Franciò G, Hölscher M, Leitner W. Eur. J. Org. Chem. 2007; 2995
  • 54 Böing C, Hahne J, Franciò G, Leitner W. Adv. Synth. Catal. 2008; 350: 1073
    • 55a Nečas D, Ramella D, Rudovská I, Kotora M. J. Mol. Catal. A: Chem. 2007; 274: 78
    • 55b Nečas D, Turský M, Tišlerová I, Kotora M. New J. Chem. 2006; 30: 671
  • 56 Ikeda S.-i, Daimon N, Sanuki R, Odashima K. Chem. Eur. J. 2006; 12: 1797
  • 57 Tekavec TN, Louie J. Tetrahedron 2008; 64: 6870
  • 58 Fürstner A, Martin R, Majima K. J. Am. Chem. Soc. 2005; 127: 12236
  • 59 Fürstner A, Majima K, Martín R, Krause H, Kattnig E, Goddard R, Lehmann CW. J. Am. Chem. Soc. 2008; 130: 1992
  • 60 Buisine O, Aubert C, Malacria M. Chem. Eur. J. 2001; 7: 3517
  • 61 Llerena D, Aubert C, Malacria M. Tetrahedron Lett. 1996; 37: 7353
  • 62 Llerena D, Aubert C, Malacria M. Tetrahedron Lett. 1996; 37: 7027
  • 63 Dolaine R, Gleason JL. Org. Lett. 2000; 2: 1753
  • 64 Ajamian A, Gleason JL. Org. Lett. 2001; 3: 4161
  • 65 Ajamian A, Gleason JL. Org. Lett. 2003; 5: 2409
  • 66 Xing P, Huang Z.-g, Jin Y, Jiang B. Tetrahedron Lett. 2013; 54: 699
  • 67 Nieto-Oberhuber C, Muñoz MP, López S, Jiménez-Núñez E, Nevado C, Herrero-Gómez E, Raducan M, Echavarren AM. Chem. Eur. J. 2006; 12: 1677
  • 68 Jalal S, Paul K, Jana U. Org. Lett. 2016; 18: 6512
  • 69 Kagoshima H, Hayashi M, Hashimoto Y, Saigo K. Organometallics 1996; 15: 5439