Synthesis 2022; 54(10): 2473-2479
DOI: 10.1055/s-0041-1737844
paper

Stereoselective Total Synthesis of (+)-Casuarine via a Functionalized Pyrrolidine

In-Soo Myeong
a   School of Pharmacy, Sungkyunkwan University, Seobu-ro 2066, Suwon-si, Gyeonggi-do 16419, Republic of Korea
,
Won-Hun Ham
a   School of Pharmacy, Sungkyunkwan University, Seobu-ro 2066, Suwon-si, Gyeonggi-do 16419, Republic of Korea
b   Yonsung Fine Chemicals Co., Ltd., Sujeong-ro 207, Jangan-myeon, Hwaseong-si, Gyeonggi-do 18581, Republic of Korea
› Author Affiliations
This work was supported by Yonsung Fine Chemicals Co., Ltd.


Abstract

The stereoselective total synthesis of (+)-casuarine has been achieved via a functionalized pyrrolidine obtained from a chiral 1,3-oxazine. The synthetic strategy includes a stereoselective dihydroxylation reaction using osmium tetroxide and stereoselective Grignard-type vinyl addition reaction as the key steps to generate the two new stereocenters. The dihydroxylation catalyzed by osmium tetroxide formed anti-amino alcohol, and the vinyl addition formed syn-alcohol. (+)-Casuarine was prepared from the functionalized pyrrolidine over 11 steps in an overall yield of 16%.

Supporting Information



Publication History

Received: 25 November 2021

Accepted after revision: 20 December 2021

Article published online:
14 February 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Kim J.-S, Kang J.-C, Yoo G.-H, Jin X, Myeong I.-S, Oh C.-Y, Ham W.-H. Tetrahedron 2015; 71: 2772
    • 1b Park S.-H, Jin X, Kang J.-C, Jung C, Kim S.-S, Kim S.-S, Lee K.-Y, Ham W.-H. Org. Biomol. Chem. 2015; 13: 4539
    • 1c Kim J.-S, Kim G.-W, Kang J.-C, Myeong I.-S, Jung C, Lee Y.-T, Choo G.-H, Park S.-H, Lee G.-J, Ham W.-H. Tetrahedron: Asymmetry 2016; 27: 171
    • 1d Kim J.-S, Lee Y.-T, Lee K.-H, Myeong I.-S, Kang J.-C, Jung C, Park S.-H, Ham W.-H. J. Org. Chem. 2016; 81: 7432
    • 1e Myeong I.-S, Kim J.-S, Lee Y.-T, Kang J.-C, Park S.-H, Jung C, Ham W.-H. Tetrahedron: Asymmetry 2016; 27: 823
    • 1f Myeong I.-S, Jung C, Kim J.-Y, Park S.-H, Ham W.-H. Tetrahedron Lett. 2018; 59: 2422
    • 1g Myeong I.-S, Ham W.-H. Tetrahedron 2019; 75: 3832
    • 1h Myeong I.-S, Jung C, Ham W.-H. Synthesis 2019; 51: 3471
    • 1i Myeong I.-S, Lee Y.-T, Kang J, Ham W.-H. J. Org. Chem. 2019; 84: 4211
    • 1j Myeong IS, Ham WH. Eur. J. Org. Chem. 2019; 1077
  • 2 Kim J.-Y, Mu Y, Jin X, Park S.-H, Pham V.-T, Song D.-K, Lee K.-Y, Ham W.-H. Tetrahedron 2011; 67: 9426
  • 3 Nash RJ, Thomas PI, Waigh RD, Fleet GW. J, Wormald MR, Lilley PM. d. Q, Watkin DJ. Tetrahedron Lett. 1994; 35: 7849
    • 4a Matsumura T, Kasai M, Hayashi T, Arisawa M, Momose Y, Arai I, Amagaya S, Komatsu Y. Pharm. Biol. 2000; 38: 302
    • 4b Cardona F, Faggi E, Liguori F, Cacciarini M, Goti A. Tetrahedron Lett. 2003; 44: 2315
    • 4c Kato A, Kano E, Adachi I, Molyneux RJ, Watson AA, Nash RJ, Fleet GW, Wormald MR, Kizu H, Ikeda K. Tetrahedron: Asymmetry 2003; 14: 325
    • 4d Cardona F, Parmeggiani C, Faggi E, Bonaccini C, Gratteri P, Sim L, Gloster TM, Roberts S, Davies GJ, Rose DR. Chem. Eur. J. 2009; 15: 1627
    • 4e Bonaccini C, Chioccioli M, Parmeggiani C, Cardona F, Lo Re D, Soldaini G, Vogel P, Bello C, Goti A, Gratteri P. Eur. J. Org. Chem. 2010; 5574
    • 4f Ritthiwigrom T, Pyne SG. Stud. Nat. Prod. Chem. 2012; 36: 1-26
  • 6 Izquierdo I, Plaza MT, Tamayo JA. Tetrahedron 2005; 61: 6527
  • 7 Van Ameijde J, Horne G, Wormald MR, Dwek RA, Nash RJ, Jones PW, Evinson EL, Fleet GW. Tetrahedron: Asymmetry 2006; 17: 2702
    • 8a Cardona F, Parmeggiani C, Faggi E, Bonaccini C, Gratteri P, Sim L, Gloster TM, Roberts S, Davies GJ, Rose DR, Goti A. Chem. Eur. J. 2009; 15: 1627
    • 8b Parmeggiani C, Cardona F, Giusti L, Reissig HU, Goti A. Chem. Eur. J. 2013; 19: 10595
  • 9 Ritthiwigrom T, Willis AC, Pyne SG. J. Org. Chem. 2010; 75: 815
  • 10 Concia AL, Gómez L, Parella T, Joglar J, Clapés P. J. Org. Chem. 2014; 79: 5386
  • 11 Li Y.-X, Wang J.-Z, Kato A, Shimadate Y, Kise M, Jia Y.-M, Fleet GW, Yu C.-Y. Org. Biomol. Chem. 2021; 19: 9410
    • 12a VanRheenen V, Kelly RC, Cha DY. Tetrahedron Lett. 1976; 1973
    • 12b Tian Y.-S, Joo J.-E, Kong B.-S, Pham V.-T, Lee K.-Y, Ham W.-H. J. Org. Chem. 2009; 74: 3962
    • 13a Kiyooka S, Nakano M, Shiota F, Fujiyama R. J. Org. Chem. 1989; 54: 5409
    • 13b Myeong I.-S, Lee Y.-T, Lee S.-H, Jung C, Kim J.-S, Park S.-H, Kang J, Lee S.-J, Ye I.-H, Ham W.-H. Tetrahedron: Asymmetry 2017; 28: 1053
    • 13c Myeong I.-S, Lee S.-H, Ham W.-H. Tetrahedron 2018; 74: 3888
  • 14 The geometries were optimized with molecular modeling (MMFF) followed by density functional calculations (DFT) at the B3LYP level with 6-311+g(d,p) as basis set (Gaussian09, by Gaussian, Inc.) in the gas phase.
  • 15 Please see the Supporting Information for further details.

    • For selective reports of stereoselective Upjohn dihydroxylations, see:
    • 16a Corey E, Danheiser RL, Chandrasekaran S, Siret P, Keck GE, Gras JL. J. Am. Chem. Soc. 1978; 100: 8031
    • 16b Cha JK, Christ W, Kishi Y. Tetrahedron Lett. 1983; 24: 3943
    • 16c Cha JK, Kim N.-S. Chem. Rev. 1995; 95: 1761
    • 18a Keck GE, Andrus MB, Romer DR. J. Org. Chem. 1991; 56: 417
    • 18b Venkatesan K, Srinivasan K. Tetrahedron: Asymmetry 2008; 19: 209
    • 18c Sabitha G, Reddy CN, Gopal P, Yadav J. Tetrahedron Lett. 2010; 51: 5736
    • 18d Yadav JS, Chinnam VV, Krishna BB. M, Rao KL. S, Das S. Tetrahedron Lett. 2015; 56: 1661
  • 19 Davies SG, Fletcher AM, Roberts PM, Thomson JE. Synlett 2017; 28: 2697
  • 20 Peaks in 1H NMR and 13C NMR spectra of the compound are broad and split due to the presence of N-Cbz rotamers.