Synlett
DOI: 10.1055/s-0042-1751536
synpacts

Harnessing the Conformer/Atropisomer-Dependent Photochromism of Diarylethene Photoswitches and Forcing a Diarylethene Atropisomer to Its Configurational Diastereomers with Polymer Mechanochemistry

Cijun Zhang
a   Department of Chemistry, Syracuse University, Syracuse, NY 13244, USA
,
Xuancheng Fu
a   Department of Chemistry, Syracuse University, Syracuse, NY 13244, USA
,
Xiaoran Hu
a   Department of Chemistry, Syracuse University, Syracuse, NY 13244, USA
b   BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA
› Author Affiliations
We gratefully acknowledge Syracuse University for the generous support of this work.


Abstract

Diarylethenes are an important class of photoswitches that usually exist in interconvertible parallel (photoinert) and antiparallel (photochromic) conformational states. Recent research afforded sterically congested diarylethenes that exist as stable and separable configurational atropisomers. Rational manipulation of stereochemistry is a robust strategy for regulating diarylethene photochemistry. Here, we present a brief account of the conformer/atropisomer-dependent photochromism of diarylethene photoswitches, and we discuss a recent advance at the interface of diarylethene photochemistry and polymer mechanochemistry: our group recently introduced a mechanical approach for converting a parallel diarylbenzothiadiazole into its antiparallel configurational diastereomers, thereby turning on its photochromic reactivity. After mechanical activation, UV light changes the converted diarylethene molecule into a colored ring-closed form by a 6π-electrocyclization reaction that permits the visualization of the mechanical activation event. Besides the fundamentally new mechanism of converting a molecule into its configurational diastereomers through force–stereochemistry coupling, the conversion of atropisomer stereochemistry is a noncovalent process and features high mechanical reactivity in comparison to conventional mechanophores, which require covalent bond scission. This new type of configurational mechanophore holds promise for various applications, such as high-sensitivity stress sensing, lithography, and information storage.

1 Diarylethene Conformers and Atropisomers

2 Polymer Mechanochemistry and Configurational Mechanophores

3 Regulating the Stereochemistry and Reactivity of a Diarylethene Atropisomer with Mechanical Force

4 Summary and Future Outlook



Publication History

Received: 05 October 2023

Accepted after revision: 07 November 2023

Article published online:
14 December 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Petermayer C, Dube H. J. Am. Chem. Soc. 2018; 140: 13558
    • 1b Gerkman MA, Gibson RS. L, Calbo J, Shi Y, Fuchter MJ, Han GG. D. J. Am. Chem. Soc. 2020; 142: 8688
    • 2a Wiedbrauk S, Bartelmann T, Thumser S, Mayer P, Dube H. Nat. Commun. 2018; 9: 1456
    • 2b Accardo JV, McClure ER, Mosquera MA, Kalow JA. J. Am. Chem. Soc. 2020; 142: 19969
    • 2c Nakagawa T, Ubukata T, Yokoyama Y. J. Photochem. Photobiol. C 2018; 34: 152
  • 3 Reynders M, Matsuura BS, Bérouti M, Simoneschi D, Marzio A, Pagano M, Trauner D. Sci. Adv. 2020; 6: eaay5064
  • 4 Gemen J, Church JR, Ruoko T, Durandin N, Białek M, Weißenfels M, Feller M, Kazes M, Odaybat M, Borin VA, Kalepu R, Diskin-Posner Y, Oron D, Fuchter MJ, Priimagi A, Schapiro I, Klajn R. Science 2023; 381: 1357
    • 5a Bismillah AN, Johnson TG, Hussein BA, Turley AT, Saha PK, Wong HC, Aguilar JA, Yufit DS, McGonigal PR. Nat. Chem. 2023; 15: 615
    • 5b Wada K, Suzuki M, Kakuta T, Yamagishi T.-a, Ohtani S, Fa S, Kato K, Akine S, Ogoshi T. Angew. Chem. Int. Ed. 2023; 62: e202217971
    • 5c Wada K, Yasuzawa K, Fa S, Nagata Y, Kato K, Ohtani S, Ogoshi T. J. Am. Chem. Soc. 2023; 145: 15324
    • 5d Ikai T, Nakamura K, Mizumoto K, Oki K, Yashima E. Angew. Chem. Int. Ed. 2023; 62: e202301127
  • 6 Fu X, Zhu B, Hu X. J. Am. Chem. Soc. 2023; 145: 15668
    • 7a Irie M, Mohri M. J. Org. Chem. 1988; 53: 803
    • 7b Irie M, Fukaminato T, Matsuda K, Kobatake S. Chem. Rev. 2014; 114: 12174
    • 7c Uchida K, Nakayama Y, Irie M. Bull. Chem. Soc. Jpn. 1990; 63: 1311
    • 7d Irie M. Diarylethene Molecular Photoswitches: Concepts and Functionalities, 1st ed. Wiley-VCH; Weinheim: 2021
  • 8 Hoffmann R, Woodward RB. J. Am. Chem. Soc. 1965; 87: 2046
    • 9a Irie M, Miyatake O, Uchida K, Eriguchi T. J. Am. Chem. Soc. 1994; 116: 9894
    • 9b Irie M, Miyatake O, Uchida K. J. Am. Chem. Soc. 1992; 114: 8715
    • 10a Zhang J, Tan W, Meng X, Tian H. J. Mater. Chem. 2009; 19: 5726
    • 10b Wu Y, Chen S, Yang Y, Zhang Q, Xie Y, Tian H, Zhu W.-H. Chem. Commun. 2012; 48: 528
    • 10c Li X, Ma Y, Wang B, Li G. Org. Lett. 2008; 10: 3639
    • 10d Morinaka K, Ubukata T, Yokoyama Y. Org. Lett. 2009; 11: 3890
    • 10e Fukumoto S, Nakashima T, Kawai T. Angew. Chem. Int. Ed. 2011; 50: 1565
    • 11a Walko M, Feringa BL. Chem. Commun. 2007; 1745
    • 11b Zheng Z, Hu H, Zhang Z, Liu B, Li M, Qu D.-H, Tian H, Zhu W.-H, Feringa BL. Nat. Photonics 2022; 16: 226
    • 12a Li W, Jiao C, Li X, Xie Y, Nakatani K, Tian H, Zhu W.-H. Angew. Chem. Int. Ed. 2014; 53: 4603
    • 12b Zhu W.-H, Yang Y, Métivier R, Zhang Q, Guillot R, Xie Y, Tian H, Nakatani K. Angew. Chem. Int. Ed. 2011; 50: 10986
    • 12c Li M, Zhu W.-H. Acc. Chem. Res. 2022; 55: 3136
    • 12d Li W, Li X, Xie Y, Wu Y, Li M, Wu X.-Y, Zhu W.-H, Tian H. Sci. Rep. 2015; 5: 9186
    • 12e Xi H, Li M, Li W, Zhu W.-H. Dyes Pigm. 2020; 182: 108620
    • 12f Li X, Li W, Ågren H, Tian H, Zhu W.-H. Dyes Pigm. 2016; 125: 348
    • 12g Li W, Cai Y, Li X, Ågren H, Tian H, Zhu W.-H. J. Mater. Chem. C 2015; 3: 8665
    • 12h Li M, Chen L.-J, Cai Y, Luo Q, Li W, Yang H.-B, Tian H, Zhu W.-H. Chem 2019; 5: 634
    • 12i Yang H, Li M, Li C, Luo Q, Zhu M.-Q, Tian H, Zhu W.-H. Angew. Chem. Int. Ed. 2020; 59: 8560
    • 12j Li M, Chen L.-J, Zhang Z, Luo Q, Yang H.-B, Tian H, Zhu W.-H. Chem. Sci. 2019; 10: 4896
    • 12k Cai Y, Gao Y, Luo Q, Li M, Zhang J, Tian H, Zhu W.-H. Adv. Opt. Mater. 2016; 4: 1410
    • 12l Hu H, Liu B, Li M, Zheng Z, Zhu W.-H. Adv. Mater. 2022; 34: 2110170
    • 12m Li M, Hu H, Liu B, Liu B, Zheng Z.-G, Tian H, Zhu W.-H. J. Am. Chem. Soc. 2022; 144: 20773
    • 13a Cox JM, Walton IM, Benedict JB. J. Mater. Chem. C 2016; 4: 4028
    • 13b Walton IM, Cox JM, Mitchell TB, Bizer NP, Benedict JB. CrystEngComm 2016; 18: 7972
    • 13c Walton IM, Cox JM, Benson CA, Patel DG, Chen Y, Benedict JB. New J. Chem. 2016; 40: 101
    • 13d Walton IM, Cox JM, Coppin JA, Linderman CM, Patel DG, Benedict JB. Chem. Commun. 2013; 49: 8012
    • 13e Patel DG, Walton IM, Cox JM, Gleason CJ, Butzer DR, Benedict JB. Chem. Commun. 2014; 50: 2653
    • 14a Takeshita M, Yamato T. Angew. Chem. Int. Ed. 2002; 41: 2156
    • 14b Takeshita M, Inoue M, Hisasue H, Maekawa S, Nakamura T. J. Phys. Org. Chem. 2007; 20: 830
    • 14c Yamada M, Sawazaki T, Fujita M, Asanoma F, Nishikawa Y, Kawai T. Chem. Eur. J. 2022; 28: e202201286
    • 14d Göstl R, Kobin B, Grubert L, Pätzel M, Hecht S. Chem. Eur. J. 2012; 18: 14282
  • 15 Yam VW.-W, Ko C.-C, Zhu N. J. Am. Chem. Soc. 2004; 126: 12734
    • 16a Caruso MM, Davis DA, Shen Q, Odom SA, Sottos NR, White SR, Moore JS. Chem. Rev. 2009; 109: 5755
    • 16b Chen Y, Mellot G, van Luijk D, Creton C, Sijbesma RP. Chem. Soc. Rev. 2021; 50: 4100
  • 17 Hickenboth CR, Moore JS, White SR, Sottos NR, Baudry J, Wilson SR. Nature 2007; 446: 423
    • 18a Davis DA, Hamilton A, Yang J, Cremar LD, Van Gough D, Potisek SL, Ong MT, Braun PV, Martínez TJ, White SR, Moore JS, Sottos NR. Nature 2009; 459: 68
    • 18b Qi Q, Sekhon G, Chandradat R, Ofodum NM, Shen T, Scrimgeour J, Joy M, Wriedt M, Jayathirtha M, Darie CC, Shipp DA, Liu X, Lu X. J. Am. Chem. Soc. 2021; 143: 17337
    • 18c McFadden ME, Osler SK, Sun Y, Robb MJ. J. Am. Chem. Soc. 2022; 144: 22391
    • 18d He W, Yuan Y, Wu M, Li X, Shen Y, Qu Z, Chen Y. Angew. Chem. Int. Ed. 2023; 62: e202218785
    • 18e Gossweiler GR, Kouznetsova TB, Craig SL. J. Am. Chem. Soc. 2015; 137: 6148
    • 18f McFadden ME, Barber RW, Overholt AC, Robb MJ. Chem. Sci. 2023; 14: 10041
    • 18g Overholts AC, Granados Razo W, Robb MJ. Nat. Chem. 2023; 15: 332
    • 19a Wang J, Piskun I, Craig SL. ACS Macro Lett. 2015; 4: 834
    • 19b Zhang H, Gao F, Cao X, Li Y, Xu Y, Weng W, Boulatov R. Angew. Chem. Int. Ed. 2016; 55: 3040
    • 19c Matsuda T, Kawakami R, Namba R, Nakajima T, Gong JP. Science 2019; 363: 504
    • 20a Hu X, Zeng T, Husic CC, Robb MJ. J. Am. Chem. Soc. 2019; 141: 15018
    • 20b Hu X, Zeng T, Husic CC, Robb MJ. ACS Cent. Sci. 2021; 7: 1216
    • 20c Husic CC, Hu X, Robb MJ. ACS Macro Lett. 2022; 11: 948
    • 20d Zeng T, Hu X, Robb MJ. Chem. Commun. 2021; 57: 11173
    • 20e Versaw BA, Zeng T, Hu X, Robb MJ. J. Am. Chem. Soc. 2021; 143: 21461
    • 20f Lin Y, Kouznetsova TB, Craig SL. J. Am. Chem. Soc. 2020; 142: 99
    • 20g Shi Z, Wu J, Song Q, Göstl R, Herrmann A. J. Am. Chem. Soc. 2020; 142: 14725
    • 20h Huo S, Zhao P, Shi Z, Zou M, Yang X, Warszawik E, Loznik M, Göstl R, Herrmann A. Nat. Chem. 2021; 13: 131
    • 20i Shi Z, Song Q, Göstl R, Herrmann A. Chem. Sci. 2021; 12: 1668
    • 20j Sun Y, Neary WJ, Burke ZP, Qian H, Zhu L, Moore JS. J. Am. Chem. Soc. 2022; 144: 1125
    • 20k Larsen MB, Boydston AJ. J. Am. Chem. Soc. 2014; 136: 1276
    • 20l Larsen MB, Boydston AJ. J. Am. Chem. Soc. 2013; 135: 8189
    • 21a Berkowski KL, Potisek SL, Hickenboth CR, Moore JS. Macromolecules 2005; 38: 8975
    • 21b Watabe T, Otsuka H. Angew. Chem. Int. Ed. 2023; 62: e202216469
    • 21c Nagamani C, Liu H, Moore JS. J. Am. Chem. Soc. 2016; 138: 2540
    • 21d Imato K, Irie A, Kosuge T, Ohishi T, Nishihara M, Takahara A, Otsuka H. Angew. Chem. Int. Ed. 2015; 54: 6168
    • 22a Diesendruck CE, Peterson GI, Kulik HJ, Kaitz JA, Mar BD, May PA, White SR, Martínez TJ, Boydston AJ, Moore JS. Nat. Chem. 2014; 6: 623
    • 22b Nixon R, De Bo G. Nat. Chem. 2020; 12: 826
    • 22c Shiraki T, Diesendruck CE, Moore JS. Faraday Discuss 2014; 170: 385
    • 23a Stevenson R, De Bo G. J. Am. Chem. Soc. 2017; 139: 16768
    • 23b Kida J, Imato K, Goseki R, Aoki D, Morimoto M, Otsuka H. Nat. Commun. 2018; 9: 3504
    • 23c Wang J, Kouznetsova TB, Boulatov R, Craig S. Nat. Commun. 2016; 7: 13433
    • 23d Wang Z, Zheng X, Ouchi T, Kouznetsova TB, Beech HK, Av-Ron S, Matsuda T, Bowser BH, Wang S, Johnson JA, Kalow JA, Olsen BD, Gong JP, Rubinstein M, Craig SL. Science 2021; 374: 193
    • 23e Yang J, Horst M, Romaniuk JA. H, Jin Z, Cegelski L, Xia Y. J. Am. Chem. Soc. 2019; 141: 6479
    • 23f Tian Y, Cao X, Li X, Zhang H, Sun C, Xu Y, Weng W, Zhang W, Boulatov R. J. Am. Chem. Soc. 2020; 142: 18687
    • 23g Göstl R, Sijbesma RP. Chem. Sci. 2016; 7: 370
    • 24a Zhang Y, Wang Z, Kouznetsova TB, Sha Y, Xu E, Shannahan L, Fermen-Coker M, Lin Y, Tang C, Craig SL. Nat. Chem. 2021; 13: 56
    • 24b Piermattei A, Karthikeyan S, Sijbesma RP. Nat. Chem. 2009; 1: 133
    • 24c Sha Y, Zhang Y, Xu E, Wang Z, Zhu T, Craig SL, Tang C. ACS Macro Lett. 2018; 7: 1174
    • 24d Paulusse JM. J, Sijbesma RP. Angew. Chem. Int. Ed. 2004; 43: 4460
    • 24e Clough JM, Balan A, van Daal T. LJ, Sijbesma RP. Angew. Chem. Int. Ed. 2016; 55: 1445
  • 26 Barber RW, Robb MJ. Chem. Sci. 2021; 12: 11703
    • 27a Muramatsu T, Okado Y, Traeger H, Schrettl S, Tamaoki N, Weder C, Sagara Y. J. Am. Chem. Soc. 2021; 143: 9884
    • 27b Sagara Y, Karman M, Verde-Sesto E, Matsuo K, Kim Y, Tamaoki N, Weder C. J. Am. Chem. Soc. 2018; 140: 1584
    • 27c Muramatsu T, Shimizu S, Clough JM, Weder C, Sagara Y. ACS Appl. Mater. Interfaces 2023; 15: 8502
    • 27d Muramatsu T, Sagara Y, Traeger H, Tamaoki N, Weder C. ACS Appl. Mater. Interfaces 2019; 11: 24571
    • 27e Sagara Y, Karman M, Seki A, Pannipara M, Tamaoki N, Weder C. ACS Cent. Sci. 2019; 5: 874
    • 28a Thazhathethil S, Muramatsu T, Tamaoki N, Weder C, Sagara Y. Angew. Chem. Int. Ed. 2022; 61: e202209225
    • 28b Sagara Y, Traeger H, Li J, Okado Y, Schrettl S, Tamaoki N, Weder C. J. Am. Chem. Soc. 2021; 143: 5519
    • 29a Yamakado T, Otsubo K, Osuka A, Saito S. J. Am. Chem. Soc. 2018; 140: 6245
    • 29b Yamakado T, Saito S. J. Am. Chem. Soc. 2022; 144: 2804
    • 29c Kimura R, Kuramochi H, Liu P, Yamakado T, Osuka A, Tahara T, Saito S. Angew. Chem. Int. Ed. 2020; 59: 16430
    • 29d Kotani R, Yokoyama S, Nobusue S, Yamaguchi S, Osuka A, Yabu H, Saito S. Nat. Commun. 2022; 13: 303
    • 30a Dal Molin M, Verolet Q, Colom A, Letrun R, Derivery E, Gonzalez-Gaitan M, Vauthey E, Roux A, Sakai N, Matile S. J. Am. Chem. Soc. 2015; 137: 568
    • 30b García-Calvo J, Maillard J, Fureraj I, Strakova K, Colom A, Mercier V, Roux A, Vauthey E, Sakai N, Fürstenberg A, Matile S. J. Am. Chem. Soc. 2020; 142: 12034
    • 30c Goujon A, Colom A, Straková K, Mercier V, Mahecic D, Manley S, Sakai N, Roux A, Matile S. J. Am. Chem. Soc. 2019; 141: 3380
    • 30d Verolet Q, Rosspeintner A, Soleimanpour S, Sakai N, Vauthey E, Matile S. J. Am. Chem. Soc. 2015; 137: 15644
    • 30e Piazzolla F, Mercier V, Assies L, Sakai N, Roux A, Matile S. Angew. Chem. Int. Ed. 2021; 60: 12258
    • 31a Raisch M, Maftuhin W, Walter M, Sommer M. Nat. Commun. 2021; 12: 4243
    • 31b Hertel R, Maftuhin W, Walter M, Sommer M. J. Am. Chem. Soc. 2022; 144: 21897
    • 32a Zhou Y, Huo S, Loznik M, Göstl R, Boersma AJ, Herrmann A. Angew. Chem. Int. Ed. 2021; 60: 1493
    • 32b Zhou Y, Centeno SP, Zhang K, Zheng L, Göstl R, Herrmann A. Adv. Mater. 2023; 35: 2210052
  • 33 Moss GP. Pure Appl. Chem. 1996; 68: 2193
    • 34a Carter RE, Liljefors T. Tetrahedron 1976; 32: 2915
    • 34b Cooke AS, Harris MM. J. Chem. Soc. 1963; 2365
    • 34c Lanman BA, Parsons AT, Zech SG. Acc. Chem. Res. 2022; 55: 2892
    • 34d Hirsch DR, Metrano AJ, Stone EA, Storch G, Miller SJ, Murelli RP. Org. Lett. 2019; 21: 2412
    • 35a Basilaia M, Chen MH, Secka J, Gustafson JL. Acc. Chem. Res. 2022; 55: 2904
    • 35b LaPlante SR, Fader LD, Fandrick KR, Fandrick DR, Hucke O, Kemper R, Miller SP. F, Edwards PJ. J. Med. Chem. 2011; 54: 7005
    • 35c LaPlante SR, Edwards PJ, Fader LD, Jakalian A, Hucke O. ChemMedChem 2011; 6: 505
    • 36a Beyer MK. J. Chem. Phys. 2000; 112: 7307
    • 36b Klein IM, Husic CC, Kovács DP, Choquette NJ, Robb MJ. J. Am. Chem. Soc. 2020; 142: 16364