Synthesis
DOI: 10.1055/s-0042-1751542
review

Copper-Catalyzed Carbonylation Reactions: A Personal Account

Hui-Qing Geng
a   Leibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Straße 29a, 18059 Rostock, Germany
,
Xiao-Feng Wu
a   Leibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Straße 29a, 18059 Rostock, Germany
b   Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, Liaoning, China
› Author Affiliations
The authors thank the financial support from the Chinese Scholar­ship Council (CSC), National Key R&D Program of China (2023YFA1507500) and Leibniz-Institut für Katalyse (LIKAT).


Abstract

Carbonylation reactions have been widely used to construct carbonyl-containing molecules or carbon enhancement reactions, which are mostly catalyzed by noble metals (Pd, Rh, Ru, Ir). In this review, we introduce the copper-catalyzed carbonylation reactions that have been developed in our group. Diverse reactions have been developed using various substrates, including the carbonylation of C–H activated alkanes, the difunctionalization of unsaturated C–C bonds, and the carbonylation of alkyl halides via the radical pathway.

1 Introduction

2 Cu-Catalyzed Carbonylation of C(sp 3)–H Bonds

3 Cu-Catalyzed Carbonylative Difunctionalization of Unsaturated Bonds

4 Cu–X (H or B) Mediated Acylation of Unsaturated Bonds with Electrophiles

5 Cu–X (H or B) Mediated Carbonylation of Unsaturated Bonds

6 Cu-Catalyzed Carbonylation of Alkyl Halides

7 Other Types of Copper-Catalyzed Carbonylation Reactions

8 Conclusion and Outlook



Publication History

Received: 18 August 2023

Accepted after revision: 28 November 2023

Article published online:
09 January 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Wu X.-F, Fang X, Wu L, Jackstell R, Neumann H, Beller M. Acc. Chem. Res. 2014; 47: 1041
    • 1b Sarkar BR, Chaudhari RV. Catal. Surv. Asia 2005; 9: 193
    • 1c Gehrtz P, Hirschbeck V, Ciszek B, Fleischer I. Synthesis 2016; 48: 1573
    • 1d Carbon Monoxide in Organic Synthesis: Carbonylation Chemistry. Gabriele B. Wiley-VCH; Weinheim: 2021
    • 1e The Chemical Transformations of C1 Compounds . Wu X.-F, Han B, Ding K, Liu Z. Wiley-VCH; Weinheim: 2022
    • 1f Beller M, Wu X.-F. Transition Metal Catalyzed Carbonylation Reactions: Carbonylative Activation of C–X Bonds. Springer; Berlin: 2013
    • 2a Yin Z, Xu J.-X, Wu X.-F. ACS Catal. 2020; 10: 6510
    • 2b Brennfuhrer A, Neumann H, Beller M. Angew. Chem. Int. Ed. 2009; 48: 4114
    • 2c Wu L, Liu Q, Jackstell R, Beller M. Angew. Chem. Int. Ed. 2014; 53: 6310
    • 2d Peng J.-B, Geng H.-Q, Wu X.-F. Chem 2019; 5: 526
    • 2e Bose SK, Mao L, Kuehn L, Radius U, Nekvinda J, Santos WL, Westcott SA, Steel PG, Marder TB. Chem. Rev. 2021; 121: 13238
    • 2f Peng J.-B, Wu F.-P, Wu X.-F. Chem. Rev. 2019; 119: 2090
    • 2g Wu X.-F, Neumann H, Beller M. Chem. Rev. 2013; 113: 1
    • 3a Roelen O. DE 849548, 1952

    • Also as:
    • 3b Roelen O. US 2327066, 1943
    • 3c Adkins H, Krsek G. J. Am. Chem. Soc. 1949; 71: 3051
  • 4 Reppe W. Justus Liebigs Ann. Chem. 1953; 582: 38
  • 5 Schoenberg A, Bartoletti I, Heck RF. J. Org. Chem. 1974; 39: 3318
  • 6 Haynes A, Maitlis PM, Morris GE, Sunley GJ, Adams H, Badger PW, Bowers CM, Cook DB, Elliott PI, Ghaffar T. J. Am. Chem. Soc. 2004; 126: 2847
  • 7 Li Z.-L, Fang G.-C, Gu Q.-S, Liu X.-Y. Chem. Soc. Rev. 2020; 49: 32
    • 8a Chemler SR, Karyakarte SD, Khoder ZM. J. Org. Chem. 2017; 82: 11311
    • 8b Allen SE, Walvoord RR, Padilla-Salinas R, Kozlowski MC. Chem. Rev. 2013; 113: 6234
    • 8c Cheng L.-J, Mankad NP. Chem. Soc. Rev. 2020; 49: 8036
    • 8d Wendlandt AE, Suess AM, Stahl SS. Angew. Chem. Int. Ed. 2011; 50: 11062
    • 8e Guo X.-X, Gu D.-W, Wu Z, Zhang W. Chem. Rev. 2015; 115: 1622
    • 8f Zhang C, Tang C, Jiao N. Chem. Soc. Rev. 2012; 41: 3464
    • 8g Evano G, Blanchard N, Toumi M. Chem. Rev. 2008; 108: 3054
    • 8h Wilkinson JR, Nuyen CE, Carpenter TS, Harruff SR, Van Hoveln R. ACS Catal. 2019; 9: 8961
    • 8i Zhou H, Li Z.-L, Gu Q.-S, Liu X.-Y. ACS Catal. 2021; 11: 7978
  • 10 Li X, Li X, Jiao N. J. Am. Chem. Soc. 2015; 137: 9246
  • 11 Li Y, Dong K, Zhu F, Wang Z, Wu X.-F. Angew. Chem. Int. Ed. 2016; 55: 7227
  • 12 Li Y, Zhu F, Wang Z, Wu X.-F. ACS Catal. 2016; 6: 5561
  • 13 Li Y, Wang C, Zhu F, Wang Z, Dixneuf PH, Wu X.-F. ChemSusChem 2017; 10: 1341
  • 15 Yin Z, Zhang Y, Zhang S, Wu X.-F. J. Catal. 2019; 377: 507
    • 16a Yin G, Mu X, Liu G. Acc. Chem. Res. 2016; 49: 2413
    • 16b Qi X, Diao T. ACS Catal. 2020; 10: 8542
    • 16c Su Y.-L, Tram L, Wherritt D, Arman H, Griffith WP, Doyle MP. ACS Catal. 2020; 10: 13682
    • 16d Beller M, Seayad J, Tillack A, Jiao H. Angew. Chem. Int. Ed. 2004; 43: 3368
    • 16e Coombs JR, Morken JP. Angew. Chem. Int. Ed. 2016; 55: 2636
    • 16f Li Y, Wu D, Cheng H.-G, Yin G. Angew. Chem. Int. Ed. 2020; 59: 7990
    • 16g McDonald RI, Liu G, Stahl SS. Chem. Rev. 2011; 111: 2981
    • 16h Kolb HC, Vannieuwenhze MS, Sharpless KB. Chem. Rev. 1994; 94: 2483
    • 16i Shimizu Y, Kanai M. Tetrahedron Lett. 2014; 55: 3727
    • 16j Peng J.-B. Adv. Synth. Catal. 2020; 362: 3059
    • 17a Dherbassy Q, Manna S, Talbot FJ. T, Prasitwatcharakorn W, Perry GJ. P, Procter DJ. Chem. Sci. 2020; 11: 11380
    • 17b Dherbassy Q, Manna S, Talbot FJ, Prasitwatcharakorn W, Perry GJ, Procter DJ. Chem. Sci. 2017; 8: 5240
  • 18 Li Y, Zhu F, Wang Z, Wu X.-F. Chem. Commun. 2018; 54: 1984
  • 19 Zhang Y, Ai H.-J, Wu X.-F. Org. Chem. Front. 2020; 7: 2986
  • 20 Zhang Y, Yin Z, Wu X.-F. Org. Lett. 2020; 22: 1889
  • 21 Wu F.-P, Yuan Y, Wu X.-F. Angew. Chem. Int. Ed. 2021; 60: 25787
    • 22a Cheng Y.-Y, Yu J.-X, Lei T, Hou H.-Y, Chen B, Tung C.-H, Wu L.-Z. Angew. Chem. Int. Ed. 2021; 60: 26822
    • 22b Liu J, Lu L.-Q, Luo Y, Zhao W, Sun P.-C, Jin W, Qi X, Cheng Y, Xiao W.-J. ACS Catal. 2022; 12: 1879
    • 22c Wang L, Sun J, Xia J, Li M, Zhang L, Ma R, Zheng G, Zhang Q. Sci. China Chem. 2022; 65: 1938
    • 22d Li N.-S, Yu S, Kabalka GW. Organometallics 1998; 17: 3815
    • 22e Liu Y, Zhang Y. Tetrahedron 2003; 59: 8429
  • 23 Zhao F, Gu X.-W, Franke R, Wu X.-F. Angew. Chem. Int. Ed. 2022; 61: e202214812
  • 24 Ullmann F, Bielecki J. Ber. Dtsch. Chem. Ges. 1901; 34: 2174
    • 25a Barder TE, Walker SD, Martinelli JR, Buchwald SL. J. Am. Chem. Soc. 2005; 127: 4685
    • 25b Lam PY, Clark CG, Saubern S, Adams J, Winters MP, Chan DM, Combs A. Tetrahedron Lett. 1998; 39: 2941
    • 25c Wu P, Givskov M, Nielsen TE. Chem. Rev. 2019; 119: 11245
    • 25d Meng F, McGrath KP, Hoveyda AH. Nature 2014; 513: 367
    • 26a Whyte A, Torelli A, Mirabi B, Zhang A, Lautens M. ACS Catal. 2020; 10: 11578
    • 26b Wang M, Shi Z. Chem. Rev. 2020; 120: 7348
    • 26c Neeve EC, Geier SJ, Mkhalid IA, Westcott SA, Marder TB. Chem. Rev. 2016; 116: 9091
    • 26d Hemming D, Fritzemeier R, Westcott SA, Santos WL, Steel PG. Chem. Soc. Rev. 2018; 47: 7477
    • 26e Semba K, Fujihara T, Terao J, Tsuji Y. Tetrahedron 2015; 71: 2183
    • 27a Ito H, Yamanaka H, Tateiwa JI, Hosomi A. Tetrahedron Lett. 2000; 41: 6821
    • 27b Takahashi K, Ishiyama T, Miyaura N. Chem. Lett. 2000; 29: 982
  • 28 Yuan Y, Wu F.-P, Xu J.-X, Wu X.-F. Angew. Chem. Int. Ed. 2020; 59: 17055
    • 29a Huang Z, Hartwig JF. Angew. Chem. Int. Ed. 2012; 51: 1028
    • 29b Luo Q, Wang C, Zhang W.-X, Xi Z. Chem. Commun. 2008; 1593
  • 30 Yuan Y, Xu J.-X, Wu X.-F. Chem. Commun. 2022; 58: 12110
  • 31 Wu F.-P, Wu X.-F. Chem. Sci. 2022; 13: 4321
  • 32 Yuan Y, Wu F.-P, Spannenberg A, Wu X.-F. Sci. China Chem. 2021; 64: 2142
  • 33 Wu F.-P, Yuan Y, Liu J, Wu X.-F. Angew. Chem. Int. Ed. 2021; 60: 8818
  • 34 Liu RS, Matsumoto H, Asato AE, Denny M, Shichida Y, Yoshizawa T, Dahlquist FW. J. Am. Chem. Soc. 1981; 103: 7195
  • 35 Wu F.-P, Wu X.-F. Chem. Sci. 2021; 12: 10341
    • 36a Ito H, Kubota K. Org. Lett. 2012; 14: 890
    • 36b Iwamoto H, Endo K, Ozawa Y, Watanabe Y, Kubota K, Imamoto T, Ito H. Angew. Chem. Int. Ed. 2019; 58: 11112
  • 37 Wu F.-P, Yuan Y, Schunemann C, Kamer PC. J, Wu X.-F. Angew. Chem. Int. Ed. 2020; 59: 10451
  • 38 Zhao F, Xu J.-X, Wu F.-P, Wu X.-F. J. Catal. 2023; 417: 37
  • 39 Wu F.-P, Wu X.-F. Angew. Chem. Int. Ed. 2021; 60: 695
    • 40a Ghose AK, Viswanadhan VN, Wendoloski JJ. J. Comb. Chem. 1999; 1: 55
    • 40b Roughley SD, Jordan AM. J. Med. Chem. 2011; 54: 3451
    • 40c Carey JS, Laffan D, Thomson C, Williams MT. Org. Biomol. Chem. 2006; 4: 2337
    • 41a Valeur E, Bradley M. Chem. Soc. Rev. 2009; 38: 606
    • 41b Dunetz JR, Magano J, Weisenburger GA. Org. Process Res. Dev. 2016; 20: 140
  • 42 De Figueiredo RM, Suppo JS, Campagne JM. Chem. Rev. 2016; 116: 12029
  • 43 Wu F.-P, Holz J, Yuan Y, Wu X.-F. CCS Chem. 2021; 3: 2643
    • 44a Guo J, Cheng Z, Chen J, Chen X, Lu Z. Acc. Chem. Res. 2021; 54: 2701
    • 44b Blieck R, Taillefer M, Monnier F. Chem. Rev. 2020; 120: 13545
    • 44c Crossley SW, Obradors C, Martinez RM, Shenvi RA. Chem. Rev. 2016; 116: 8912
    • 44d Jordan AJ, Lalic G, Sadighi JP. Chem. Rev. 2016; 116: 8318
    • 44e He Y, Chen J, Jiang X, Zhu S. Chin. J. Chem. 2022; 40: 651
    • 44f Biswas S, Parsutkar MM, Jing SM, Pagar VV, Herbort JH, RajanBabu TV. Acc. Chem. Res. 2021; 54: 4545
    • 44g Margrey KA, Nicewicz DA. Acc. Chem. Res. 2016; 49: 1997
    • 44h Wang Y, He Y, Zhu S. Acc. Chem. Res. 2022; 55: 3519
    • 44i Carney JR, Dillon BR, Campbell L, Thomas SP. Angew. Chem. Int. Ed. 2018; 57: 10620
    • 44j Sun X.-Y, Yao B.-Y, Xuan B, Xiao L.-J, Zhou Q.-L. Chem. Catal. 2022; 2: 3140
  • 45 de Fátima Â. Synlett 2005; 1805
  • 46 Koenig TM, Daeuble JF, Brestensky DM, Stryker JM. Tetrahedron Lett. 1990; 31: 3237
    • 47a Liu RY, Buchwald SL. Acc. Chem. Res. 2020; 53: 1229
    • 47b Perry GJ, Jia T, Procter DJ. ACS Catal. 2020; 10: 1485
    • 47c Suess AM, Lalic G. Synlett 2016; 27: 1165
    • 47d Chen J, Lu Z. Org. Chem. Front. 2018; 5: 260
    • 47e Hirano K, Miura M. J. Am. Chem. Soc. 2022; 144: 648
    • 47f Pirnot MT, Wang Y.-M, Buchwald SL. Angew. Chem. Int. Ed. 2016; 55: 48
    • 47g Sorádová Z, Šebesta R. ChemCatChem 2016; 8: 2581
    • 47h Chen J, Guo J, Lu Z. Chin. J. Chem. 2018; 36: 1075
    • 47i Colonna P, Bezzenine S, Gil R, Hannedouche J. Adv. Synth. Catal. 2020; 362: 1550
    • 47j Wang H, Buchwald SL. Org. React. 2019; 100: 121
  • 48 Hu L, Gao H, Hu Y, Wu Y.-B, Lv X, Lu G. J. Org. Chem. 2023; 88: 2750
  • 49 Deutsch C, Krause N, Lipshutz BH. Chem. Rev. 2008; 108: 2916
  • 50 Yuan Y, Wu F.-P, Schunemann C, Holz J, Kamer PC. J, Wu X.-F. Angew. Chem. Int. Ed. 2020; 59: 22441
    • 51a Yuan Y, Zhao F, Wu X.-F. Chem. Sci. 2021; 12: 12676
    • 51b Yuan Y, Zhang Y, Li W, Zhao Y, Wu X.-F. Angew. Chem. Int. Ed. 2023; 62: e202309993
  • 52 Geng H.-Q, Wu X.-F. Chem. Commun. 2022; 58: 6534
  • 53 Yuan Y, Wu F.-P, Wu X.-F. Chem. Sci. 2021; 12: 13777
  • 54 Yuan Y, Zhang Y, Xu J.-X, Wu X.-F. CCS Chem. 2023; 5: 1866
  • 55 Ebner C, Carreira EM. Chem. Rev. 2017; 117: 11651
    • 56a Wessjohann LA, Brandt W, Thiemann T. Chem. Rev. 2003; 103: 1625
    • 56b Faust R. Angew. Chem. Int. Ed. 2001; 40: 2251
    • 56c Donaldson W. Tetrahedron 2001; 57: 8589
    • 56d Salaün J. Top. Curr. Chem. 2000; 207: 1
    • 56e Chen DY.-K, Pouwer RH, Richard J.-A. Chem. Soc. Rev. 2012; 41: 4631
    • 56f Fan Y.-Y, Gao X.-H, Yue J.-M. Sci. China Chem. 2016; 59: 1126
    • 57a Wu W, Lin Z, Jiang H. Org. Biomol. Chem. 2018; 16: 7315
    • 57b Thankachan AP, Sindhu K, Krishnan KK, Anilkumar G. Org. Biomol. Chem. 2015; 13: 8780
    • 57c Trushkov IV. Isr. J. Chem. 2016; 56: 369
    • 57d Qian D, Zhang J. Chem. Soc. Rev. 2015; 44: 677
  • 58 Wu F.-P, Luo X, Radius U, Marder TB, Wu X.-F. J. Am. Chem. Soc. 2020; 142: 14074
    • 59a Zhu S.-F, Zhou Q.-L. Acc. Chem. Res. 2012; 45: 1365
    • 59b Bergstrom BD, Nickerson LA, Shaw JT, Souza LW. Angew. Chem. Int. Ed. 2021; 60: 6864
    • 59c Huang M.-Y, Zhao Y.-T, Zhang C.-D, Zhu S.-F. Angew. Chem. Int. Ed. 2022; 61: e202203343
    • 59d Fischer EO, Maasböl A. Angew. Chem., Int. Ed. Engl. 1964; 3: 580
    • 59e Ford A, Miel H, Ring A, Slattery CN, Maguire AR, McKervey MA. Chem. Rev. 2015; 115: 9981
    • 59f Huang M.-Y, Zhu S.-F. Chem. Sci. 2021; 12: 15790
    • 59g He Y, Huang Z, Wu K, Ma J, Zhou Y.-G, Yu Z. Chem. Soc. Rev. 2022; 51: 2759
    • 59h Yang Z, Stivanin ML, Jurberg ID, Koenigs RM. Chem. Soc. Rev. 2020; 49: 6833
    • 59i Zhu D, Chen L, Fan H, Yao Q, Zhu S. Chem. Soc. Rev. 2020; 49: 908
    • 59j Davies HM, Beckwith RE. Chem. Rev. 2003; 103: 2861
    • 59k Doyle MP, Duffy R, Ratnikov M, Zhou L. Chem. Rev. 2010; 110: 704
    • 59l Doyle MP, Forbes DC. Chem. Rev. 1998; 98: 911
    • 59m Xia Y, Wang J. J. Am. Chem. Soc. 2020; 142: 10592
    • 59n Ye J.-H, Quach L, Paulisch T, Glorius F. J. Am. Chem. Soc. 2019; 141: 16227
    • 59o Barluenga J, Fernandez-Rodriguez MA, Aguilar E. J. Organomet. Chem. 2005; 690: 539
    • 59p Zhang G, Zhang Z, Hou M, Cai X, Yang K, Yu P, Song Q. Nat. Commun. 2022; 13: 2624
    • 59q Keipour H, Carreras V, Ollevier T. Org. Biomol. Chem. 2017; 15: 5441
    • 59r Yu Y, Yi S, Zhu C, Hu W, Gao B, Chen Y, Wu W, Jiang H. Org. Lett. 2016; 18: 400
    • 59s Polozov AM, Polezhaeva NA, Mustaphin AH, Khotinen AV, Arbuzov BA. Synthesis 1990; 515
  • 60 Geng H.-Q, Li WB, Zhao YY, Wu X.-F. Org. Chem. Front. 2022; 9: 4943
  • 61 Geng H.-Q, Wu X.-F. Chem. Sci. 2023; 14: 5638
  • 62 Wu F.-P, Geng H.-Q, Wu X.-F. Angew. Chem. Int. Ed. 2022; 61: e202211455
  • 63 Wu F.-P, Yang Y, Fuentes DP, Wu X.-F. Chem 2022; 8: 1982
    • 64a Franke R, Selent D, Börner A. Chem. Rev. 2012; 112: 5675
    • 64b Pruett RL. Adv. Organomet. Chem. 1979; 17: 1
    • 64c Agbossou F, Carpentier J.-F, Mortreux A. Chem. Rev. 1995; 95: 2485
    • 64d Chakrabortty S, Almasalma AA, de Vries JG. Catal. Sci. Technol. 2021; 11: 5388
    • 64e Zhang B, Peña Fuentes D, Börner A. ChemTexts 2021; 8: 2 DOI: 10.1007/s40828-021-00154-x.
    • 64f Hydroformylation: Fundamentals, Processes, and Applications in Organic Synthesis, Vol. 2. Börner A, Franke R. Wiley-VCH; Weinheim: 2016
    • 64g Pospech J, Fleischer I, Franke R, Buchholz S, Beller M. Angew. Chem. Int. Ed. 2013; 52: 2852
  • 65 Geng H.-Q, Meyer T, Franke R, Wu X.-F. Chem. Sci. 2021; 12: 14937
  • 66 Geng H.-Q, Franke R, Wu X.-F. Org. Lett. 2022; 24: 7993
    • 67a Sumino S, Fusano A, Fukuyama T, Ryu I. Acc. Chem. Res. 2014; 47: 1563
    • 67b Cheng L.-J, Mankad NP. Acc. Chem. Res. 2021; 54: 2261
    • 67c Gu X.-W, Wu X.-F. Org. Chem. Front. 2023; 10: 1587
    • 67d Ryu I, Sonoda N. Angew. Chem., Int. Ed. Engl. 1996; 35: 1050
    • 67e Ryu I, Sonoda N, Curran DP. Chem. Rev. 1996; 96: 177
  • 68 Geng H.-Q, Wu X.-F. Org. Lett. 2021; 23: 8062
  • 69 Zhao FQ, Russo P, Mancuso R, Gabriele B, Wu X.-F. J. Catal. 2022; 413: 907
  • 70 Zhang S, Del Pozo J, Romiti F, Mu Y, Torker S, Hoveyda AH. Science 2019; 364: 45
  • 71 Wu F.-P, Wu X.-F. Angew. Chem. Int. Ed. 2021; 60: 11730
  • 72 Wang Z, Yin Z, Wu X.-F. Chem. Commun. 2018; 54: 4798
  • 73 Li Y, Wang C, Zhu F, Wang Z, Soulé JF, Dixneuf PH, Wu X.-F. Chem. Commun. 2017; 53: 142
  • 74 Yin Z, Wang Z, Li W, Wu X.-F. Eur. J. Org. Chem. 2017; 2017: 1769
    • 75a Huser M, Youinwou MT, Osborn JA. Angew. Chem. Int. Ed. Engl. 1989; 28: 1386
    • 75b Zhang Z, Liu Y, Ling L, Li Y, Dong Y, Gong M, Zhao X, Zhang Y, Wang J. J. Am. Chem. Soc. 2011; 133: 4330
  • 76 Yang H, Bao Z.-P, Wang L.-C, Wu X.-F. Org. Lett. 2023; 25: 1963