Synthesis
DOI: 10.1055/s-0042-1751568
short review
Special Issue Dual Catalysis

Asymmetric Allylic Substitution Reactions Based on Relay Catalysis

Zhenwei Wu
a   Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, 518055, P. R. of China
,
Xiaoming Feng
a   Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, 518055, P. R. of China
b   Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. of China
,
Yangbin Liu
a   Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, 518055, P. R. of China
› Author Affiliations
We are grateful for funding from the National Natural Science Foundation of China (22001177), Shenzhen Bay Laboratory (S201100003 and S211101001-1), Shenzhen Bay Qihang Fellow (QH23001), and the Guangdong Pearl River Talents Program (2021QN020268).


Abstract

Transition-metal-catalyzed asymmetric allylic substitution reactions represent a hot research topic in the field of asymmetric synthesis, with significant progress having been made. Among diverse catalysis systems, relay catalysis enables sequential activation of multiple steps in one pot and the rapid construction of multiple chiral centers, providing a simple and powerful platform for organic synthesis. Recently, relay catalysis has been successfully applied to asymmetric allylic substitution reactions, and a variety of challenging transformations have been realized. This Short Review summarizes the related progress on asymmetric allylic substitution reactions based on relay catalysis over the last decade.

1 Introduction

2 The General Transformation Model

3 Allylation Relays Further Reaction

4 Initial Reaction Relays Allylation

5 Conclusion and Outlook



Publication History

Received: 01 February 2024

Accepted after revision: 15 February 2024

Article published online:
05 March 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Trost BM, Van Vranken DL. Chem. Rev. 1996; 96: 395
    • 1b Hethcox JC, Shockley SE, Stoltz BM. ACS Catal. 2016; 6: 6207
    • 1c Qu J, Helmchen G. Acc. Chem. Res. 2017; 50: 2539
    • 1d Rössler SL, Petrone DA, Carreira EM. Acc. Chem. Res. 2019; 52: 2657
    • 1e Cheng Q, Tu H.-F, Zheng C, Qu J.-P, Helmchen G, You S.-L. Chem. Rev. 2019; 119: 1855
    • 1f Li G, Huo X, Jiang X, Zhang W. Chem. Soc. Rev. 2020; 49: 2060
    • 1g Pàmies O, Margalef J, Cañellas S, James J, Judge E, Guiry PJ, Moberg C, Bäckvall J.-E, Pfaltz A, Pericàs MA, Diéguez M. Chem. Rev. 2021; 121: 4373
    • 1h Tanaka S, Kitamura M. Chem. Rec. 2021; 21: 1385
    • 2a Helmchen G, Pfaltz A. Acc. Chem. Res. 2000; 33: 336
    • 2b Miyabe H, Takemoto Y. Synlett 2005; 1641
    • 2c Oliver S, Evans PA. Synthesis 2013; 45: 3179
    • 2d Süsse L, Stoltz BM. Chem. Rev. 2021; 121: 4084
    • 2e Wang X, Peng Y, Zhao L, Huo X, Zhang W. Sci. China Chem. 2023; 66: 2238
    • 3a Brown JM, MacIntyre JE. J. Chem. Soc., Perkin Trans. 2 1985; 961
    • 3b Lloyd-Jones GC, Pfaltz A. Angew. Chem. Int. Ed. 1995; 34: 462
    • 3c Consiglio G, Indolese A. J. Organomet. Chem. 1991; 417: C36
    • 3d Trost BM, Hachiya I. J. Am. Chem. Soc. 1998; 120: 1104
    • 3e Selvakumar K, Valentini M, Pregosin PS, Albinati A. Organometallics 1999; 18: 4591
    • 3f Matsushima Y, Onitsuka K, Kondo T, Mitsudo T.-a, Takahashi S. J. Am. Chem. Soc. 2001; 123: 10405
    • 3g Wu X, Gong LZ. Synthesis 2019; 51: 122
    • 4a Park J, Hong S. Chem. Soc. Rev. 2012; 41: 6931
    • 4b Pye DR, Mankad NP. Chem. Sci. 2017; 8: 1705
    • 4c Fu J, Huo X, Li B, Zhang W. Org. Biomol. Chem. 2017; 15: 9747
    • 4d Wu Y, Huo X, Zhang W. Chem. Eur. J. 2020; 26: 4895
    • 4e Martínez S, Veth L, Lainer B, Dydio P. ACS Catal. 2021; 11: 3891
    • 4f Huo X, Li G, Wang X, Zhang W. Angew. Chem. Int. Ed. 2022; 61: e202210086
    • 4g Chang X, Cheng X, Liu X.-T, Fu C, Wang W.-Y, Wang C.-J. Angew. Chem. Int. Ed. 2022; 61: e202206517
    • 4h Wei L, Wang C.-J. Chem. Catal. 2023; 3: 100455
    • 4i Fu C, He L, Chang X, Cheng X, Wang Z.-F, Zhang Z, Larionov VA, Dong X.-Q, Wang C.-J. Angew. Chem. Int. Ed. 2024; 63: e202315325

      For selected reviews on relay reactions, see:
    • 6a Wu X, Li ML, Gong L.-Z. Acta Chim Sin. 2013; 71: 1091
    • 6b Yang Z.-P, Zhang W, You S.-L. J. Org. Chem. 2014; 79: 7785

    • For selected examples on relay reactions, see:
    • 6c Chen YS, Dong SX, Xu X, Liu XH, Feng XM. Angew. Chem. Int. Ed. 2018; 57: 16554
    • 6d Zhang D, Lin LL, Yang J, Liu XH, Feng XM. Angew. Chem. Int. Ed. 2018; 57: 12323
    • 6e Zheng HF, Wang Y, Xu CR, Xiong Q, Lin LL, Feng XM. Angew. Chem. Int. Ed. 2019; 58: 5327
    • 6f Xu CR, Wang KX, Li DW, Lin LL, Feng XM. Angew. Chem. Int. Ed. 2019; 58: 18438
    • 6g Xu CR, Qiao JL, Dong SX, Zhou YQ, Liu XH, Feng XM. Chem. Sci. 2021; 12: 5458
  • 7 Sawamura M, Sudoh M, Ito Y. J. Am. Chem. Soc. 1996; 118: 3309
  • 8 Chen G, Deng Y, Gong L, Mi A, Cui X, Jiang Y, Choi MC. K, Chan AS. C. Tetrahedron: Asymmetry 2001; 12: 1567
  • 9 Nakoji M, Kanayama T, Okino T, Takemoto Y. Org. Lett. 2001; 3: 3329
    • 11a Chen D.-F, Han Z.-Y, Zhou X.-L, Gong L.-Z. Acc. Chem. Res. 2014; 47: 2365
    • 11b Parmar D, Sugiono E, Raja S, Rueping M. Chem. Rev. 2014; 114: 9047
    • 11c Inamdar SM, Konala A, Patil NT. Chem. Commun. 2014; 50: 15124
    • 12a Trost BM, Machacek MR, Aponick A. Acc. Chem. Res. 2006; 39: 747
    • 12b Lu Z, Ma S. Angew. Chem. Int. Ed. 2008; 47: 258
    • 12c Liu Y, Han S.-J, Liu W.-B, Stoltz BM. Acc. Chem. Res. 2015; 48: 740
  • 13 Kanbayashi N, Takenaka K, Okamura T.-a, Onitsuka K. Angew. Chem. Int. Ed. 2013; 52: 4897
  • 14 Li L.-L, Tao Z.-L, Han Z.-Y, Gong L.-Z. Org. Lett. 2017; 19: 102
  • 15 Wang T.-C, Wang P.-S, Chen D.-F, Gong L.-Z. Sci. China Chem. 2022; 65: 298
  • 16 Baird LJ, Timmer MS. M, Teesdale-Spittle PH, Harvey JE. J. Org. Chem. 2009; 74: 2271
  • 17 Nájera C, Sansano JM. Chem. Rev. 2007; 107: 4584
  • 18 Spoehrle SS. M, West TH, Taylor JE, Slawin AM. Z, Smith AD. J. Am. Chem. Soc. 2017; 139: 11895
  • 19 Yang W.-L, Wang Y.-L, Li W, Gu B.-M, Wang S.-W, Luo X, Tian B.-X, Deng W.-P. ACS Catal. 2021; 11: 12557
  • 20 Zhang M.-M, Chen P, Xiong W, Hui X.-S, Lu L.-Q, Xiao W.-J. CCS Chem. 2021; 4: 2620
  • 21 Masson-Makdissi J, Prieto L, Abel-Snape X, Lautens M. Angew. Chem. Int. Ed. 2021; 60: 16932
  • 22 Zhu J.-X, Chen Z.-C, Du W, Chen Y.-C. Angew. Chem. Int. Ed. 2022; 61: e202200880
  • 23 Yang Z, Bao Y, Huang J, Han Z, Sun J, Huang H. Org. Lett. 2023; 25: 5624
  • 24 Yamamoto K, Qureshi Z, Tsoung J, Pisella G, Lautens M. Org. Lett. 2016; 18: 4954
  • 25 Huang L.-Z, Xuan Z, Jeon HJ, Du Z.-T, Kim JH, Lee S.-g. ACS Catal. 2018; 8: 7340
  • 26 Meng J, Fan L.-F, Han Z.-Y, Gong L.-Z. Chem 2018; 4: 1047
  • 28 Wu G, Xu H, Liu Z, Liu Y, Yang X, Zhang X, Huang Y. Org. Lett. 2019; 21: 7708
    • 29a Sykes RB, Cimarusti CM, Bonner DP, Bush K, Floyd DM, Georgopapadakou NH, Koster WH, Liu WC, Parker WL, Principe PA, Rathnum ML, Slusarchyk WA, Trejo WH, Wells JS. Nature 1981; 291: 489
    • 29b von Nussbaum F, Brands M, Hinzen B, Weigand S, Häbich D. Angew. Chem. Int. Ed. 2006; 45: 5072
    • 29c Hugonnet J.-E, Tremblay LW, Boshoff HI, Barry CE, Blanchard JS. Science 2009; 323: 1215
  • 30 Qi J, Wei F, Tung C.-H, Xu Z. Angew. Chem. Int. Ed. 2021; 60: 13814
  • 31 Qi J, Song T, Yang Z, Sun S, Tung C.-H, Xu Z. ACS Catal. 2023; 13: 2555
  • 32 Miyashita M, Sasaki M, Hattori I, Sakai M, Tanino K. Science 2004; 305: 495
  • 33 Simmons EM, Hartwig JF. Angew. Chem. Int. Ed. 2012; 51: 3066
  • 34 Helfenbein J, Lartigue C, Noirault E, Azim E, Legailliard J, Galmier MJ, Madelmont JC. J. Med. Chem. 2002; 45: 5806
  • 35 Fu C, Chang X, Xiao L, Wang C.-J. Org. Lett. 2022; 24: 5562
    • 36a Wu X.-F, Neumann H, Beller M. Chem. Rev. 2013; 113: 1
    • 36b Garrison Kinney R, Tjutrins J, Torres GM, Liu NJ, Kulkarni O, Arndtsen BA. Nat. Chem. 2018; 10: 193
    • 36c Zhu C, Liu J, Li M.-B, Bäckvall J.-E. Chem. Soc. Rev. 2020; 49: 341
  • 37 Ding W.-W, Zhou Y, Han Z.-Y, Gong L.-Z. J. Org. Chem. 2023; 88: 5187
  • 38 Zhang J, Lu B, Ge Z, Wang L, Wang X. Org. Lett. 2022; 24: 8423
  • 39 Naasz R, Arnold LA, Minnaard AJ, Feringa BL. Chem. Commun. 2001; 735
  • 40 Hayashi T, Tokunaga N, Yoshida K, Han JW. J. Am. Chem. Soc. 2002; 124: 12102
  • 41 Nahra F, Macé Y, Lambin D, Riant O. Angew. Chem. Int. Ed. 2013; 52: 3208
  • 42 Xie J.-H, Hou Y.-M, Feng Z, You S.-L. Angew. Chem. Int. Ed. 2023; 62: e202216396
  • 43 Qiqige Q, Lundgren RJ, Kong D. Chem. Eur. J. 2023; 29: e202300727
  • 44 Tian J.-J, Li R.-R, Tian G.-X, Wang X.-C. Angew. Chem. Int. Ed. 2023; 62: e202307697
  • 45 Greßies S, Süße L, Casselman T, Stoltz BM. J. Am. Chem. Soc. 2023; 145: 11907