References
<A NAME="RU10703ST-1A">1a</A>
Herbert RB. In The Chemistry and Biology of Isoquinoline Alkaloids
Philipson JD.
Roberts MF.
Zenk MH.
Springer Verlag;
Berlin, Heidelberg, New York, Tokyo:
1985.
p.213
<A NAME="RU10703ST-1B">1b</A>
Bentley KW. In The Isoquinoline Alkaloids
Harwood Academic Publishers;
Amsterdam:
1998.
<A NAME="RU10703ST-2">2</A> For a review, see:
Rozwadowska MD.
Heterocycles
1994,
39:
903
<A NAME="RU10703ST-3A">3a</A>
Brossi A.
Focella A.
Teitel S.
Helv. Chim. Acta
1972,
55:
15
<A NAME="RU10703ST-3B">3b</A>
Konda M.
Shioiri T.
Yamada S.
Chem. Pharm. Bull.
1975,
23:
1025
<A NAME="RU10703ST-3C">3c</A>
Piper IM.
MacLean DB.
Kvarnstrom I.
Szarek W.
Can. J. Chem.
1983,
61:
2721
<A NAME="RU10703ST-3D">3d</A>
Czarnocki Z.
MacLean DB.
Szarek W.
Can. J. Chem.
1986,
64:
2205
<A NAME="RU10703ST-3E">3e</A>
Comins DL.
Badawi M.
Tetrahedron Lett.
1991,
32:
2995
<A NAME="RU10703ST-3F">3f</A>
Kawate T.
Yamada H.
Matsumizu M.
Nishida A.
Nakagawa M.
Synlett
1997,
761
<A NAME="RU10703ST-3G">3g</A>
Ziólkowski M.
Czarnocki Z.
Tetrahedron Lett.
2000,
41:
1963
<A NAME="RU10703ST-4A">4a</A>
Meyers AI.
Dickman DA.
J. Am. Chem. Soc.
1987,
109:
1263
<A NAME="RU10703ST-4B">4b</A>
Pyne SG.
Dikic S.
J. Org. Chem.
1990,
55:
1932
<A NAME="RU10703ST-4C">4c</A>
Hashigaki K.
Kan K.
Qais N.
Takeuchi Y.
Yamato M.
Chem. Pharm. Bull.
1991,
39:
1126
<A NAME="RU10703ST-4D">4d</A>
Meyers AI.
Warmus JS.
Gonzalez MA.
Guiles J.
Akahane A.
Tetrahedron Lett.
1991,
32:
5509
<A NAME="RU10703ST-4E">4e</A>
Meyers AI.
Tetrahedron
1992,
48:
2589
<A NAME="RU10703ST-4F">4f</A>
Nakamura M.
Hirai A.
Nakamura E.
J. Am. Chem. Soc.
1996,
118:
8489
<A NAME="RU10703ST-4G">4g</A>
Okamoto S.
Teng X.
Fujii S.
Takayama Y.
Sato F.
J. Am. Chem. Soc.
2001,
123:
3462
<A NAME="RU10703ST-4H">4h</A>
Adam S.
Pannecoucke X.
Combret J.-C.
Quirion J.-C.
J. Org. Chem.
2001,
66:
8744
<A NAME="RU10703ST-5A">5a</A>
Yamada K.
Takeda M.
Iwakuma T.
J. Chem. Soc., Perkin Trans. 1
1983,
265
<A NAME="RU10703ST-5B">5b</A>
Polniaszek RP.
Kaufman CR.
J. Am. Chem. Soc.
1989,
111:
4859
<A NAME="RU10703ST-6A">6a</A>
Pyne SG.
Bloem P.
Chapman SL.
Dixon CE.
Griffith R.
J. Org. Chem.
1990,
55:
1086
<A NAME="RU10703ST-6B">6b</A>
Richter-Addo GB.
Knight DA.
Dewey MA.
Arif AM.
Gladysz JA.
J. Am. Chem. Soc.
1993,
115:
11863
<A NAME="RU10703ST-6C">6c</A>
Chan E.
Lee AWM.
Jiang L.
Tetrahedron Lett.
1995,
36:
715
<A NAME="RU10703ST-6D">6d</A>
Wirth T.
Fragale G.
Synthesis
1998,
162
<A NAME="RU10703ST-6E">6e</A>
Wünsch B.
Nerdinger S.
Eur. J. Org. Chem.
1998,
711
<A NAME="RU10703ST-6F">6f</A>
Itoh T.
Nagata K.
Miyazaki M.
Ohsawa A.
Synlett
1999,
1154
<A NAME="RU10703ST-6G">6g</A>
Pedrosa R.
Andrés C.
Iglesias JM.
J. Org. Chem.
2001,
66:
243
<A NAME="RU10703ST-6H">6h</A>
Alexakis A.
Amiot F.
Tetrahedron: Asymmetry
2002,
13:
2117
<A NAME="RU10703ST-7A">7a</A>
Noyori R.
Ohta M.
Hsiao Y.
Kimura M.
Ohta T.
Takaya H.
J. Am. Chem. Soc.
1986,
108:
7117
<A NAME="RU10703ST-7B">7b</A>
Kimura M.
Hsiao Y.
Ohta M.
Tsukamoto M.
Ohta T.
Takaya H.
Noyori R.
J. Org. Chem.
1994,
59:
297
<A NAME="RU10703ST-7C">7c</A>
Morimoto T.
Achiwa K.
Tetrahedron: Asymmetry
1995,
6:
2661
<A NAME="RU10703ST-7D">7d</A>
Morimoto T.
Suzuki N.
Achiwa K.
Heterocycles
1996,
43:
2557
<A NAME="RU10703ST-7E">7e</A>
Willoughby CA.
Buchwald SL.
J. Am. Chem. Soc.
1994,
116:
8952
<A NAME="RU10703ST-7F">7f</A>
Willoughby CA.
Buchwald SL.
J. Am. Chem. Soc.
1994,
116:
11703
<A NAME="RU10703ST-7G">7g</A>
Uematsu N.
Fujii A.
Hashiguchi S.
Ikariya T.
Noyori R.
J. Am. Chem. Soc.
1996,
118:
4916
<A NAME="RU10703ST-7H">7h</A>
Kang J.
Kim JB.
Cho KH.
Cho BT.
Tetrahedron: Asymmetry
1997,
8:
657
<A NAME="RU10703ST-7I">7i</A>
Morimoto T.
Suzuki N.
Achiwa K.
Tetrahedron: Asymmetry
1998,
9:
183
<A NAME="RU10703ST-7J">7j</A>
Mao J.
Baker DC.
Org. Lett.
1999,
1:
841
<A NAME="RU10703ST-8">8</A>
Ukaji Y.
Shimizu Y.
Kenmoku Y.
Ahmed A.
Inomata K.
Chem. Lett.
1997,
59
<A NAME="RU10703ST-9A">9a</A>
Hirsenkorn R.
Tetrahedron Lett.
1990,
31:
7591
<A NAME="RU10703ST-9B">9b</A>
Hirsenkorn R.
Tetrahedron Lett.
1991,
32:
1775
For reviews see:
<A NAME="RU10703ST-10A">10a</A>
Hayashi T. In Catalytic Asymmetric Synthesis
Ojima I.
VCH;
Weinheim:
1993.
p.325
<A NAME="RU10703ST-10B">10b</A>
Trost BM.
van Vranken DL.
Chem. Rev.
1996,
96:
395
<A NAME="RU10703ST-10C">10c</A>
Johannsen M.
Jørgensen KA.
Chem. Rev.
1998,
98:
1689
Example of intramolecular allylic amination:
<A NAME="RU10703ST-11A">11a</A>
Trost BM.
Krische MJ.
Radinov R.
Zanoni G.
J. Am. Chem. Soc.
1996,
118:
6297
<A NAME="RU10703ST-11B">11b</A> Domino Heck-allylic amination:
Flubacher D.
Helmchen G.
Tetrahedron Lett.
1999,
40:
3867
<A NAME="RU10703ST-12A">12a</A>
Ito K.
Kashiwagi R.
Iwasaki K.
Katsuki T.
Synlett
1999,
1563
<A NAME="RU10703ST-12B">12b</A>
Ito K.
Kashiwagi R.
Hayashi S.
Uchida T.
Katsuki T.
Synlett
2001,
284
<A NAME="RU10703ST-13">13</A>
All the compounds in Scheme
[2]
gave satisfactory 1H NMR (400 MHz) spectra. Compound 1a: δ = 6.73 (dt, J = 1.2 and 11.2 Hz, 1 H), 6.65 (s, 1 H), 6.64 (s, 1 H), 5.81 (dt, J = 6.8 and 11.2 Hz, 1 H), 4.71 (dd, J = 1.2 and 6.8 Hz, 2 H), 3.87 (s, 6 H), 3.52 (dt, J = 6.8 and 6.8 Hz, 2 H), 2.87 (t, J = 6.8 Hz, 2 H), 2.03 (s, 3 H). Compound 1b: δ = 6.95 (br s, 1 H), 6.74 (dt, J = 1.2 and 11.2 Hz, 1 H), 6.65 (s, 1 H), 6.62 (s, 1 H), 5.77 (dt, J = 6.8 and 11.2 Hz, 1 H), 4.73 (dd, J = 1.2 and 6.8 Hz, 2 H), 3.87 (s, 3 H), 3.86 (s, 3 H), 3.53-3.43 (m, 2 H), 2.89 (t,
J = 6.8 Hz, 2 H), 1.13 (s, 9 H).
<A NAME="RU10703ST-14A">14a</A>
von Matt P.
Pfaltz A.
Angew. Chem., Int. Ed. Engl.
1993,
32:
566
<A NAME="RU10703ST-14B">14b</A>
Sprinz J.
Helmchen G.
Tetrahedron Lett.
1993,
34:
1769
<A NAME="RU10703ST-14C">14c</A>
Dawson GJ.
Frost CG.
Williams JMJJ.
Tetrahedron Lett.
1993,
34:
3149
<A NAME="RU10703ST-14D">14d</A>
Loiseleur O.
Meier P.
Pfaltz A.
Angew. Chem., Int. Ed. Engl.
1996,
35:
200
<A NAME="RU10703ST-15">15</A>
Typical Experimental Procedure for Allylic Amination:
Tris(dibenzylideacetone)dipalladium(0) chloroform adduct (1.9 mg, 1.8 µmol) and ligand
2 (1.5 mg, 3.6 µmol) was placed in a flask under nitrogen and CH2Cl2 (0.36 mL) was added. After being stirred for 30 min at r.t., compound 1b (50 mg, 0.12 mmol) in CH2Cl2 (0.24 mL) and K2CO3 (49.8 mg, 0.36 mmol) was added successively and the mixture was stirred at the temperature
for 12 d. The mixture was quenched with H2O and extracted with CH2Cl2. The extract was dried over anhyd MgSO4 and concentrated. Silica gel chromatography of the residue (hexane-EtOAc = 9:1) gave
the desired product (33.7 mg, 89%) as an oil. [α]D
23 -157.7 (c 0.38, CHCl3). 1H NMR analysis of the product at 24 °C revealed that it existed as a 78:22 mixture
of two rotamers based on the amide function. 1H NMR (400 MHz): δ = 6.64 (s, 0.22 H), 6.61 (s, 0.78 H), 6.60 (s, 0.78 H), 6.56 (s,
0.22 H), 6.06-5.93 (m, 1.78 H), 5.48-5.45 (m, 0.22 H), 5.33-5.29 (m, 1 H), 5.17-5.11
(m, 0.78 H), 5.05 (d, J = 17.2 Hz, 0.22 H), 4.55-4.48 (m, 0.22 H), 4.09-3.98 (m, 0.78 H), 3.87 (s, 3 H),
3.85 (s, 3 H), 3.56 (dt, J = 4.0 and 12.0 Hz, 0.78 H), 3.26 (dt, J = 4.8 and 12.4 Hz, 0.22 H), 3.02-2.92 (m, 1 H), 2.78-2.71 (m, 1 H). Anal. Calcd for
C15H16F3NO3: C, 57.14; H, 5.12; N, 4.44. Found: C, 57.02; H, 5.16; N, 4.42. Enantiomeric excess
of the product was determined to be 88% by HPLC using a chiral stationary phase column
(Daicel Chiralcel OJ-H; hexane:i-PrOH= 9:1).
<A NAME="RU10703ST-16">16</A>
A larger scale cyclization of 1b (0.64 mmol scale) afforded 6 with slightly reduced enantioselectivity (85% ee). This compound 6 was used for the following reactions.
<A NAME="RU10703ST-17">17</A>
The specific rotation of 7a (98% ee) was [α]D
24 -91.0 (c 2.03, CHCl3) {Lit. R-isomer
[3d]
[α]D
23 +88.8 (c 2.08, CHCl3)}. Since the enantiomer of 7a has been converted into the enantiomers of (S)-calycotomine and (S)-N-methyl-calycotomine respectively, the synthesis of 7a means that formal total syntheses of those isoquinoline alkaloids have been achieved.
[3d]